ﻻ يوجد ملخص باللغة العربية
10,000 simulations of 1000-particle realisations of the same cluster are computed by direct force summation. Over three crossing times the original Poisson noise is amplified more than tenfold by self-gravity. The clusters fundamental dipole mode is strongly excited by Poisson noise, and this mode makes a major contribution to driving diffusion of stars in energy. The diffusive flow through action space is computed for the simulations and compared with the predictions of both local-scattering theory and the Balescu-Lenard (BL) equation. The predictions of local-scattering theory are qualitatively wrong because the latter neglects self-gravity. These results imply that local-scattering theory is of little value. Future work on cluster evolution should employ either N-body simulation or the BL equation. However, significant code development will be required to make use of the BL equation practicable.
The process of relaxation of a system of particles interacting with long-range forces is relevant to many areas of Physics. For obvious reasons, in Stellar Dynamics much attention has been paid to the case of 1/r^2 force law. However, recently the in
We explore the gravitational influence of pressure supported stellar systems on the internal density distribution of a gaseous environment. We conclude that compact massive star clusters with masses >= 10^6 M_sun act as cloud condensation nuclei and
The long timescale evolution of a self-gravitating system is generically driven by two-body encounters. In many cases, the motion of the particles is primarily governed by the mean field potential. When this potential is integrable, particles move on
First, we have ensured that spherical nonrotating collisionless systems collapse with almost retaining spherical configurations during initial contraction phases even if they are allowed to collapse three-dimensionally. Next, on the assumption of sph
In the mean field limit, isolated gravitational systems often evolve towards a steady state through a violent relaxation phase. One question is to understand the nature of this relaxation phase, in particular the role of radial instabilities in the e