ترغب بنشر مسار تعليمي؟ اضغط هنا

Region Refinement Network for Salient Object Detection

112   0   0.0 ( 0 )
 نشر من قبل Zhuotao Tian
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Albeit intensively studied, false prediction and unclear boundaries are still major issues of salient object detection. In this paper, we propose a Region Refinement Network (RRN), which recurrently filters redundant information and explicitly models boundary information for saliency detection. Different from existing refinement methods, we propose a Region Refinement Module (RRM) that optimizes salient region prediction by incorporating supervised attention masks in the intermediate refinement stages. The module only brings a minor increase in model size and yet significantly reduces false predictions from the background. To further refine boundary areas, we propose a Boundary Refinement Loss (BRL) that adds extra supervision for better distinguishing foreground from background. BRL is parameter free and easy to train. We further observe that BRL helps retain the integrity in prediction by refining the boundary. Extensive experiments on saliency detection datasets show that our refinement module and loss bring significant improvement to the baseline and can be easily applied to different frameworks. We also demonstrate that our proposed model generalizes well to portrait segmentation and shadow detection tasks.



قيم البحث

اقرأ أيضاً

116 - Shuhan Chen , Yun Fu 2020
In this paper, we aim to develop an efficient and compact deep network for RGB-D salient object detection, where the depth image provides complementary information to boost performance in complex scenarios. Starting from a coarse initial prediction b y a multi-scale residual block, we propose a progressively guided alternate refinement network to refine it. Instead of using ImageNet pre-trained backbone network, we first construct a lightweight depth stream by learning from scratch, which can extract complementary features more efficiently with less redundancy. Then, different from the existing fusion based methods, RGB and depth features are fed into proposed guided residual (GR) blocks alternately to reduce their mutual degradation. By assigning progressive guidance in the stacked GR blocks within each side-output, the false detection and missing parts can be well remedied. Extensive experiments on seven benchmark datasets demonstrate that our model outperforms existing state-of-the-art approaches by a large margin, and also shows superiority in efficiency (71 FPS) and model size (64.9 MB).
Deep-learning based salient object detection methods achieve great progress. However, the variable scale and unknown category of salient objects are great challenges all the time. These are closely related to the utilization of multi-level and multi- scale features. In this paper, we propose the aggregate interaction modules to integrate the features from adjacent levels, in which less noise is introduced because of only using small up-/down-sampling rates. To obtain more efficient multi-scale features from the integrated features, the self-interaction modules are embedded in each decoder unit. Besides, the class imbalance issue caused by the scale variation weakens the effect of the binary cross entropy loss and results in the spatial inconsistency of the predictions. Therefore, we exploit the consistency-enhanced loss to highlight the fore-/back-ground difference and preserve the intra-class consistency. Experimental results on five benchmark datasets demonstrate that the proposed method without any post-processing performs favorably against 23 state-of-the-art approaches. The source code will be publicly available at https://github.com/lartpang/MINet.
Owing to the difficulties of mining spatial-temporal cues, the existing approaches for video salient object detection (VSOD) are limited in understanding complex and noisy scenarios, and often fail in inferring prominent objects. To alleviate such sh ortcomings, we propose a simple yet efficient architecture, termed Guidance and Teaching Network (GTNet), to independently distil effective spatial and temporal cues with implicit guidance and explicit teaching at feature- and decision-level, respectively. To be specific, we (a) introduce a temporal modulator to implicitly bridge features from motion into the appearance branch, which is capable of fusing cross-modal features collaboratively, and (b) utilise motion-guided mask to propagate the explicit cues during the feature aggregation. This novel learning strategy achieves satisfactory results via decoupling the complex spatial-temporal cues and mapping informative cues across different modalities. Extensive experiments on three challenging benchmarks show that the proposed method can run at ~28 fps on a single TITAN Xp GPU and perform competitively against 14 cutting-edge baselines.
Recent saliency models extensively explore to incorporate multi-scale contextual information from Convolutional Neural Networks (CNNs). Besides direct fusion strategies, many approaches introduce message-passing to enhance CNN features or predictions . However, the messages are mainly transmitted in two ways, by feature-to-feature passing, and by prediction-to-prediction passing. In this paper, we add message-passing between features and predictions and propose a deep unified CRF saliency model . We design a novel cascade CRFs architecture with CNN to jointly refine deep features and predictions at each scale and progressively compute a final refined saliency map. We formulate the CRF graphical model that involves message-passing of feature-feature, feature-prediction, and prediction-prediction, from the coarse scale to the finer scale, to update the features and the corresponding predictions. Also, we formulate the mean-field updates for joint end-to-end model training with CNN through back propagation. The proposed deep unified CRF saliency model is evaluated over six datasets and shows highly competitive performance among the state of the arts.
92 - Yu-Huan Wu , Yun Liu , Le Zhang 2020
Recent progress on salient object detection (SOD) mainly benefits from multi-scale learning, where the high-level and low-level features collaborate in locating salient objects and discovering fine details, respectively. However, most efforts are dev oted to low-level feature learning by fusing multi-scale features or enhancing boundary representations. High-level features, which although have long proven effective for many other tasks, yet have been barely studied for SOD. In this paper, we tap into this gap and show that enhancing high-level features is essential for SOD as well. To this end, we introduce an Extremely-Downsampled Network (EDN), which employs an extreme downsampling technique to effectively learn a global view of the whole image, leading to accurate salient object localization. To accomplish better multi-level feature fusion, we construct the Scale-Correlated Pyramid Convolution (SCPC) to build an elegant decoder for recovering object details from the above extreme downsampling. Extensive experiments demonstrate that EDN achieves state-of-the-art performance with real-time speed. Our efficient EDN-Lite also achieves competitive performance with a speed of 316fps. Hence, this work is expected to spark some new thinking in SOD. Full training and testing code will be available at https://github.com/yuhuan-wu/EDN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا