ﻻ يوجد ملخص باللغة العربية
Solving ground states of quantum many-body systems has been a long-standing problem in condensed matter physics. Here, we propose a new unsupervised machine learning algorithm to find the ground state of a general quantum many-body system utilizing the benefits of artificial neural network. Without assuming the specific forms of the eigenvectors, this algorithm can find the eigenvectors in an unbiased way with well controlled accuracy. As examples, we apply this algorithm to 1D Ising and Heisenberg models, where the results match very well with exact diagonalization.
The classical simulation of quantum systems typically requires exponential resources. Recently, the introduction of a machine learning-based wavefunction ansatz has led to the ability to solve the quantum many-body problem in regimes that had previou
The many-body localization (MBL) transition is a quantum phase transition involving highly excited eigenstates of a disordered quantum many-body Hamiltonian, which evolve from extended/ergodic (exhibiting extensive entanglement entropies and fluctuat
We numerically study both the avalanche instability and many-body resonances in strongly-disordered spin chains exhibiting many-body localization (MBL). We distinguish between a finite-size/time MBL regime, and the asymptotic MBL phase, and identify
Finding the precise location of quantum critical points is of particular importance to characterise quantum many-body systems at zero temperature. However, quantum many-body systems are notoriously hard to study because the dimension of their Hilbert
Many-body localization (MBL) is a result of the balance between interference-based Anderson localization and many-body interactions in an ultra-high dimensional Fock space. It is usually expected that dissipation is blurring interference and destroyi