ﻻ يوجد ملخص باللغة العربية
We study electronic phase competition in a system of three coupled spinless Luttinger liquids using abelian bosonization, together with a perturbative renormalization group (RG) analysis. The scaling procedure generates off-diagonal contributions to the phase stiffness matrix, which require both rescaling as well as large rotations of the fields. These rotations, generally non-abelian in nature, are important for correctly obtaining the dominant electronic orders and critical behavior in different parameter regimes. They generate a coupling between different interaction channels even at the tree-level order in the coupling constant scaling equations. We study competing phases in this system, taking into account the aforementioned rotations, and determine its critical behavior in a variety of interaction parameter regimes where perturbative RG is possible. The phase boundaries are found to be of the Berezinskii-Kosterlitz-Thouless (BKT) type, and we specify the parameter regimes where valley-symmetry breaking, chiral orders, and restoration of $C_{3}$ symmetry may be observed. We discuss experimental systems where our approach and findings may be relevant.
We study the entanglement spectrum (ES) and entropy between two coupled Tomonaga-Luttinger liquids (TLLs) on parallel periodic chains. This problem gives access to the entanglement properties of various interesting systems, such as spin ladders as we
An interacting spinless fermion wire coupled to a three-dimensional (3D) semiconducting substrate is approximated by a narrow ladder model (NLM) with varying number of legs. We compute density distributions, gaps, charge-density-wave (CDW) order para
We study systems of bosons whose low-energy excitations are located along a spherical submanifold of momentum space. We argue for the existence of gapless phases which we dub Bose-Luttinger liquids, which in some respects can be regarded as boson
Using functional renormalization group methods, we present a self-consistent calculation of the true Fermi momenta k_F^a (antibonding band) and k_F^b (bonding band) of two spinless interacting metallic chains coupled by small interchain hopping. In t
We investigate a quantum many-body lattice system of one-dimensional spinless fermions interacting with a dynamical $Z_2$ gauge field. The gauge field mediates long-range attraction between fermions resulting in their confinement into bosonic dimers.