ﻻ يوجد ملخص باللغة العربية
The double-electron capture and the electron capture with positron emission in $^{168}$Yb have been investigated for the first time at the STELLA facility of the Gran Sasso underground laboratory (Italy) measuring 371 g of highly purified ytterbium oxide placed on the end-cap of a 465 cm$^3$ ultra-low-background high purity Germanium detector (HPGe). No gamma associated to double beta processes in $^{168}$Yb have been observed after 2074 h of data taking. This has allowed setting the half-life limits on the level of $lim T_{1/2}sim$ $10^{14}-10^{18}$ yr at 90% C.L. Particularly, a lower half-life limit on a possible resonant neutrinoless double-electron capture in $^{168}$Yb to the $(2)^-$ 1403.7 keV excited state of $^{168}$Er is set as $T_{1/2}geq1.9times 10^{18}$ yr at 90% C.L. Half-life limits $T_{1/2}^{2 u(0 u)}geq 4.5(4.3)times10^{16}$ yr were set on the $2 u(0 u)2beta^-$ decay of $^{176}$Yb to the $2^+$ 84.3 keV first excited level of $^{176}$Hf.
The first ever search for $2varepsilon$ and $varepsilonbeta^+$ decay of $^{174}$Hf was realized using a high-pure sample of hafnium (with mass 179.8 g) and the ultra low-background HPGe-detector system located 225 m underground. After 75 days of data
The absolute mass value of $^{168}$Yb has been directly determined with the JYFLTRAP Penning trap mass spectrometer at the Ion Guide Isotope Separator On-Line (IGISOL) facility. A more precise value of the mass of $^{168}$Yb is needed to extract poss
A search for double-beta decay of osmium has been realized for the first time with the help of an ultra-low background HPGe gamma detector at the underground Gran Sasso National Laboratories of the INFN (Italy). After 2741 h of data taking with a 173
A search for double $beta$ decay of dysprosium was realized for the first time with the help of an ultra low-background HP Ge $gamma$ detector. After 2512 h of data taking with a 322 g sample of dysprosium oxide limits on double beta processes in $^{
A search for Lorentz- and CPT-violating signals in the double beta decay spectrum of $^{136}$Xe has been performed using an exposure of 100 kg$cdot$yr with the EXO-200 detector. No significant evidence of the spectral modification due to isotropic Lo