ترغب بنشر مسار تعليمي؟ اضغط هنا

Star-formation in CALIFA early-type galaxies. A matter of discs

107   0   0.0 ( 0 )
 نشر من قبل Jairo Mendez-Abreu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The star formation main sequence (SFMS) is a tight relation between the galaxy star formation rate (SFR) and its total stellar mass ($M_star$). Early-type galaxies (ETGs) are often considered as low-SFR outliers of this relation. We study, for the first time, the separated distribution in the SFR vs. $M_star$ of bulges and discs of 49 ETGs from the CALIFA survey. This is achieved using C2D, a new code to perform spectro-photometric decompositions of integral field spectroscopy datacubes. Our results reflect that: i) star formation always occurs in the disc component and not in bulges; ii) star-forming discs in our ETGs are compatible with the SFMS defined by star forming galaxies at $z sim 0$; iii) the star formation is not confined to the outskirts of discs, but it is present at all radii (even where the bulge dominates the light); iv) for a given mass, bulges exhibit lower sSFR than discs at all radii; and v) we do not find a deficit of molecular gas in bulges with respect to discs for a given mass in our ETGs. We speculate our results favour a morphological quenching scenario for ETGs.



قيم البحث

اقرأ أيضاً

The morphological, spectroscopic and kinematical properties of the warm interstellar medium (wim) in early-type galaxies (ETGs) hold key observational constraints to nuclear activity and the buildup history of these massive quiescent systems. High-qu ality integral field spectroscopy (IFS) data with a wide spectral and spatial coverage, such as those from the CALIFA survey, offer a precious opportunity for advancing our understanding in this respect. We use deep IFS data from CALIFA (califa.caha.es) to study the wim over the entire extent and optical spectral range of 32 nearby ETGs. We find that all ETGs in our sample show faint (Halpha equivalent width EW~0.5...2 {AA}) extranuclear nebular emission extending out to >= 2 Petrosian_50 radii. Confirming and strengthening our conclusions in Papaderos et al. (2013) we argue that ETGs span a broad continuous sequence with regard to the properties of their wim, and they can be roughly subdivided into two characteristic classes. The first one (type i) comprises ETGs with a nearly constant EW~1-3 {AA} in their extranuclear component, in quantitative agreement with (even though, no proof for) the hypothesis of photoionization by pAGB stars. The second class (type ii) consists of virtually wim-evacuated ETGs with a large Lyman continuum (Lyc) photon escape fraction and a very low (<= 0.5 {AA}) EW in their nuclear zone. These two classes appear indistinguishable from one another by their LINER-specific emission-line ratios. Additionally, here we extend the classification by the class i+ which stands for a subset of type i ETGs with low-level star-fomation in contiguous spiral-arm like features in their outermost periphery. These faint features, together with traces of localized star formation in several type i&i+ systems point to a non-negligible contribution from young massive stars to the global ionizing photon budget in ETGs.
145 - F. S. Liu , Shude Mao (2 2012
We identify a total of 120 early-type Brightest Cluster Galaxies (BCGs) at 0.1<z<0.4 in two recent large cluster catalogues selected from the Sloan Digital Sky Survey (SDSS). They are selected with strong emission lines in their optical spectra, with both H{alpha} and [O II]{lambda}3727 line emission, which indicates significant ongoing star formation. They constitute about ~ 0.5% of the largest, optically-selected, low-redshift BCG sample, and the fraction is a strong function of cluster richness. Their star formation history can be well described by a recent minor and short starburst superimposed on an old stellar component, with the recent episode of star formation contributing on average only less than 1 percent of the total stellar mass. We show that the more massive star-forming BCGs in richer clusters tend to have higher star formation rate (SFR) and specific SFR (SFR per unit galaxy stellar mass). We also compare their statistical properties with a control sample selected from X-ray luminous clusters, and show that the fraction of star-forming BCGs in X-ray luminous clusters is almost one order of magnitude larger than that in optically-selected clusters. BCGs with star formation in cooling flow clusters usually have very flat optical spectra and show the most active star formation, which may be connected with cooling flows.
493 - Andrea Negri 2015
High resolution 2D hydrodynamical simulations describing the evolution of the hot ISM in axisymmetric two-component models of early-type galaxies well reproduced the observed trends of the X-ray luminosity ($L_mathrm{x}$) and temperature ($T_mathrm{x }$) with galaxy shape and rotation, however they also revealed the formation of an exceedingly massive cooled gas disc in rotating systems. In a follow-up of this study, here we investigate the effects of star formation in the disc, including the consequent injection of mass, momentum and energy in the pre-existing interstellar medium. It is found that subsequent generations of stars originate one after the other in the equatorial region; the mean age of the new stars is $> 5$ Gyr, and the adopted recipe for star formation can reproduce the empirical Kennicutt-Schmidt relation. The results of the previous investigation without star formation, concerning $L_mathrm{x}$ and $T_mathrm{x}$ of the hot gas, and their trends with galactic shape and rotation, are confirmed. At the same time, the consumption of most of the cold gas disc into new stars leads to more realistic final systems, whose cold gas mass and star formation rate agree well with those observed in the local universe. In particular, our models could explain the observation of kinematically aligned gas in massive, fast-rotating early-type galaxies.
We use optical integral-field spectroscopic (IFS) data from 103 nearby galaxies at different stages of the merging event, from close pairs to merger remnants provided by the CALIFA survey, to study the impact of the interaction in the specific star f ormation and oxygen abundance on different galactic scales. To disentangle the effect of the interaction and merger from internal processes, we compared our results with a control sample of 80 non-interacting galaxies. We confirm the moderate enhancement (2-3 times) of specific star formation for interacting galaxies in central regions as reported by previous studies; however, the specific star formation is comparable when observed in extended regions. We find that control and interacting star-forming galaxies have similar oxygen abundances in their central regions, when normalized to their stellar masses. Oxygen abundances of these interacting galaxies seem to decrease compared to the control objects at the large aperture sizes measured in effective radius. Although the enhancement in central star formation and lower metallicities for interacting galaxies have been attributed to tidally induced inflows, our results suggest that other processes such as stellar feedback can contribute to the metal enrichment in interacting galaxies.
134 - Stefano Zibetti 2019
We perform spatially resolved stellar population analysis for a sample of 69 early-type galaxies (ETGs) from the CALIFA integral field spectroscopic survey, including 48 ellipticals and 21 S0s. We generate and quantitatively characterize profiles of light-weighted mean stellar age and metallicity within $lesssim 2R_e$, as a function of radius and stellar-mass surface density $mu_*$. We study in detail the dependence of profiles on galaxies global properties, including velocity dispersion $sigma_e$, stellar mass, morphology. ETGs are universally characterized by strong, negative metallicity gradients ($sim -0.3,text{dex}$ per $R_e$) within $1,R_e$, which flatten out moving towards larger radii. A quasi-universal local $mu_*$-metallicity relation emerges, which displays a residual systematic dependence on $sigma_e$, whereby higher $sigma_e$ implies higher metallicity at fixed $mu_*$. Age profiles are typically U-shaped, with minimum around $0.4,R_e$, asymptotic increase to maximum ages beyond $sim 1.5,R_e$, and an increase towards the centre. The depth of the minimum and the central increase anti-correlate with $sigma_e$. A possible qualitative interpretation of these observations is a two-phase scenario. In the first phase, dissipative collapse occurs in the inner $1,R_e$, establishing a negative metallicity gradient. The competition between the outside-in quenching due to feedback-driven winds and some form of inside-out quenching, possibly caused by central AGN feedback or dynamical heating, determines the U-shaped age profiles. In the second phase, the accretion of ex-situ stars from quenched and low-metallicity satellites shapes the flatter stellar population profiles in the outer regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا