ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards global fits in EFTs and New Physics implications

67   0   0.0 ( 0 )
 نشر من قبل Emma Slade
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Emma Slade




اسأل ChatGPT حول البحث

I discuss recent progress on fits to dimension-six operators in the Standard Model Effective Theory (SMEFT). I focus on the top quark sector of the SMEFT, as well as the theoretical advances made in computing SMEFT effects through to next-to-leading order in QCD and the use of these calculations in global fits. I also discuss fits performed to the Higgs and electroweak sectors of the SMEFT and the possibility for performing global fits to multiple sectors simultaneously.



قيم البحث

اقرأ أيضاً

We update the global fit to electroweak precision observables, including the effect of the latest measurements at hadron colliders of the $W$ and top-quark masses and the effective leptonic weak mixing angle. We comment on the impact of these measure ments in terms of constraints on new physics. We also update the bounds derived from the fit to the Higgs-boson signal strengths, including the observables measured at the LHC Run 2, and compare the improvements with respect to the 7 and 8 TeV results.
129 - P. Scott , C. Savage , J. Edsjo 2012
We present a fast likelihood method for including event-level neutrino telescope data in parameter explorations of theories for new physics, and announce its public release as part of DarkSUSY 5.0.6. Our construction includes both angular and spectra l information about neutrino events, as well as their total number. We also present a corresponding measure for simple model exclusion, which can be used for single models without reference to the rest of a parameter space. We perform a number of supersymmetric parameter scans with IceCube data to illustrate the utility of the method: example global fits and a signal recovery in the constrained minimal supersymmetric standard model (CMSSM), and a model exclusion exercise in a 7-parameter phenomenological version of the MSSM. The final IceCube detector configuration will probe almost the entire focus-point region of the CMSSM, as well as a number of MSSM-7 models that will not otherwise be accessible to e.g. direct detection. Our method accurately recovers the mock signal, and provides tight constraints on model parameters and derived quantities. We show that the inclusion of spectral information significantly improves the accuracy of the recovery, providing motivation for its use in future IceCube analyses.
We provide a comprehensive, up-to-date analysis of possible New Physics contributions to the mass difference $Delta M_D$ in $D^0$-${bar D}^0$ mixing. We consider the most general low energy effective Hamiltonian and include leading order QCD running of effective operators. We then explore an extensive list of possible New Physics models that can generate these operators, which we organize as including Extra Fermions, Extra Gauge Bosons, Extra Scalars, Extra Space Dimensions and Extra Symmetries. For each model we place restrictions on the allowed parameter space using the recent evidence for observation of $D$ meson mixing. In many scenarios, we find strong constraints that surpass those from other search techniques and provide an important test of flavor changing neutral currents in the up-quark sector. We also review the recent BaBar and Belle findings, and describe the current status of the Standard Model predictions of $D^0$-${bar D}^0$ mixing.
We assess the status of a wide class of WIMP dark matter (DM) models in light of the latest experimental results using the global fitting framework $textsf{GAMBIT}$. We perform a global analysis of effective field theory (EFT) operators describing th e interactions between a gauge-singlet Dirac fermion and the Standard Model quarks, the gluons and the photon. In this bottom-up approach, we simultaneously vary the coefficients of 14 such operators up to dimension 7, along with the DM mass, the scale of new physics and 8 nuisance parameters that reflect uncertainties in the local DM halo, nuclear form factors and the top quark mass. We include the renormalization group evolution of all operator coefficients and perform an automated matching to the non-relativistic EFT relevant for DM scattering. Our up-to-date likelihood functions include all relevant experimental constraints based on the latest data from $mathit{Planck}$, direct and indirect detection experiments, and the LHC, in particular a very recent ATLAS monojet search based on the full run 2 dataset. For light DM ($lesssim 100$ GeV), we find that it is impossible to satisfy all constraints simultaneously unless the particle under consideration constitutes only a DM sub-component and the scale of the new physics is so low that the EFT breaks down for the calculation of LHC constraints. At intermediate values of the new physics scale ($approx 1$ TeV), we find that our results are significantly influenced by several small excesses in the LHC data such that the best-fit parameter regions depend on the precise prescription that we adopt to ensure EFT validity. In addition to these interesting features, we find a large region of viable parameter space where the EFT is valid and the relic density can be reproduced, implying that WIMPs can still account for the DM of the universe while being consistent with the latest data.
Hadronic vacuum polarization (HVP) is not only a critical part of the Standard Model (SM) prediction for the anomalous magnetic moment of the muon $(g-2)_mu$, but also a crucial ingredient for global fits to electroweak (EW) precision observables due to its contribution to the running of the fine-structure constant encoded in $Deltaalpha^{(5)}_text{had}$. We find that with modern EW precision data, including the measurement of the Higgs mass, the global fit alone provides a competitive, independent determination of $Delta alpha^{(5)}_text{had}big|_text{EW}=270.2(3.0)times 10^{-4}$. This value actually lies below the range derived from $e^+e^-totext{hadrons}$ cross-section data, and thus goes into the opposite direction as would be required if a change in HVP were to bring the SM prediction for $(g-2)_mu$ into agreement with the Brookhaven measurement. Depending on the energy where the bulk of the changes in the cross section occurs, reconciling experiment and SM prediction for $(g-2)_mu$ by adjusting HVP would thus not necessarily weaken the case for physics beyond the SM (BSM), but to some extent shift it from $(g-2)_mu$ to the EW fit. We briefly explore some options of BSM scenarios that could conceivably explain the ensuing tension.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا