ترغب بنشر مسار تعليمي؟ اضغط هنا

Observational evidence for bar formation in disk galaxies via cluster-cluster interaction

237   0   0.0 ( 0 )
 نشر من قبل Yongmin Yoon
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Bars are an elongated structure that extends from the centre of galaxies, and about one-third of disk galaxies are known to possess bars. These bars are thought to form either through a physical process inherent in galaxies, or through an external process such as galaxy-galaxy interactions. However, there are other plausible mechanisms of bar formation that still need to be observationally tested. Here we present the observational evidence that bars can form via cluster-cluster interaction. We examined 105 galaxy clusters at redshift $0.015 < z < 0.060$ that are selected from the Sloan Digital Sky Survey data, and identified 16 interacting clusters. We find that the barred disk-dominated galaxy fraction is about 1.5 times higher in interacting clusters than in clusters with no clear signs of ongoing interaction (42% versus 27%). Our result indicates that bars can form through a large-scale violent phenomenon, and cluster-cluster interaction should be considered an important mechanism of bar formation.



قيم البحث

اقرأ أيضاً

110 - Cody M. Rude 2019
Evolution of galaxies in dense environments can be affected by close encounters with neighbouring galaxies and interactions with the intracluster medium. Dwarf galaxies (dGs) are important as their low mass makes them more susceptible to these effect s than giant systems. Combined luminosity functions (LFs) in the r- and u-band of 15 galaxy clusters were constructed using archival data from the Canada-France-Hawaii Telescope. LFs were measured as a function of cluster-centric radius from stacked cluster data. Marginal evidence was found for an increase in the faint-end slope of the u-band LF relative to the r-band with increasing cluster-centric radius. The dwarf-to-giant ratio (DGR) was found to increase toward the cluster outskirts, with the u-band DGR increasing faster with cluster-centric radius compared to the r-band. The dG blue fraction was found to be ~2 times larger than the giant galaxy blue fraction over all cluster-centric distance (~5sigma level). The central concentration (C) was used as a proxy to distinguish nucleated versus non-nucleated dGs. The ratio of high-C to low-C dGs was found to be ~2 times greater in the inner cluster region compared to the outskirts (2.8sigma level). The faint-end slope of the r-band LF for the cluster outskirts (0.6 < r/r_200 < 1.0) is steeper than the SDSS field LF, while the u-band LF is marginally steeper at the 2.5sigma level. Decrease in the faint-end slope of the r- and u-band cluster LFs towards the cluster centre is consistent with quenching of star formation via ram pressure stripping and galaxy-galaxy interactions.
145 - F. S. Liu , Shude Mao (2 2012
We identify a total of 120 early-type Brightest Cluster Galaxies (BCGs) at 0.1<z<0.4 in two recent large cluster catalogues selected from the Sloan Digital Sky Survey (SDSS). They are selected with strong emission lines in their optical spectra, with both H{alpha} and [O II]{lambda}3727 line emission, which indicates significant ongoing star formation. They constitute about ~ 0.5% of the largest, optically-selected, low-redshift BCG sample, and the fraction is a strong function of cluster richness. Their star formation history can be well described by a recent minor and short starburst superimposed on an old stellar component, with the recent episode of star formation contributing on average only less than 1 percent of the total stellar mass. We show that the more massive star-forming BCGs in richer clusters tend to have higher star formation rate (SFR) and specific SFR (SFR per unit galaxy stellar mass). We also compare their statistical properties with a control sample selected from X-ray luminous clusters, and show that the fraction of star-forming BCGs in X-ray luminous clusters is almost one order of magnitude larger than that in optically-selected clusters. BCGs with star formation in cooling flow clusters usually have very flat optical spectra and show the most active star formation, which may be connected with cooling flows.
We present new large field observations of molecular clouds with NANTEN2 toward the super star cluster NGC3603 in the transitions 12CO(J=2-1, J=1-0) and 13CO(J=2-1, J=1-0). We suggest that two molecular clouds at 13 km s-1 and 28 km s-1 are associate d with NGC3603 as evidenced by higher temperatures toward the H II region as well as morphological correspondence. The mass of the clouds is too small to gravitationally bind them, given their relative motion of ~20 km s-1. We suggest that the two clouds collided with each other a Myr ago to trigger the formation of the super star cluster. This scenario is able to explain the origin of the highest mass stellar population in the cluster which is as young as a Myr and is segregated within the central sub-pc of the cluster. This is the second super star cluster along side Westerlund2 where formation may have been triggered by a cloud-cloud collision.
We study the star formation quenching mechanism in cluster galaxies by fitting the SED of the Herschel Reference Survey, a complete volume-limited K-band-selected sample of nearby galaxies including objects in different density regions, from the core of the Virgo cluster to the general field. The SED are fitted using the CIGALE SED modelling code. The truncated activity of cluster galaxies is parametrised using a specific SFH with 2 free parameters, the quenching age QA and the quenching factor QF. These 2 parameters are crucial for the identification of the quenching mechanism which acts on long timescales if starvation while rapid and efficient if ram pressure. To be sensitive to an abrupt and recent variation of the star formation activity, we combine in a new way 20 UV to FIR photometric bands with 3 age-sensitive Balmer line absorption indices extracted from available medium-resolution integrated spectroscopy and with Halpha narrow band imaging data. The use of a truncated SFH significantly increases the quality of the fit in those objects whose atomic gas content has been removed during the interaction with the hostile cluster environment. The typical QA of the perturbed late-type galaxies is QA < 300 Myr whenever the activity of star formation is reduced by 50% < QF <= 80% and QA < 500 Myr for QF > 80%, while that of the quiescent early-types is QA ~ 1-3 Gyr. The fraction of late-types with a star formation activity reduced by QF > 80% and with an HI-deficiency parameter HI-def > 0.4 drops by a factor of ~ 5 from the inner half virial radius of the Virgo cluster, where the hot diffuse X-ray emitting gas of the cluster is located, to the outer regions. The efficient quenching of the star formation activity observed in Virgo suggests that the dominant stripping process is ram pressure. We discuss the implication of this result in the cosmological context of galaxy evolution.
We present the results of a Keck-ESI spectroscopic study of six dwarf elliptical (dE) galaxies in the Perseus Cluster core, and confirm two dwarfs as cluster members for the first time. All six dEs follow the size-magnitude relation for dE/dSph galax ies. Central velocity dispersions are measured for three Perseus dwarfs in our sample, and all lie on the $sigma$-luminosity relation for early-type, pressure supported systems. We furthermore examine SA 0426-002, a unique dE in our sample with a bar-like morphology surrounded by low-surface brightness wings/lobes ($mu_{B} = 27$ mag arcsec$^{-2}$). Given its morphology, velocity dispersion ($sigma_{0} = 33.9 pm 6.1 $ km s$^{-1}$), velocity relative to the brightest cluster galaxy NGC 1275 (2711 km s$^{-1}$), size ($R_{e} =2.1 pm 0.10$ kpc), and Sersic index ($n= 1.2 pm 0.02$), we hypothesise the dwarf has morphologically transformed from a low mass disc to dE via harassment. The low-surface brightness lobes can be explained as a ring feature, with the bar formation triggered by tidal interactions via speed encounters with Perseus Cluster members. Alongside spiral structure found in dEs in Fornax and Virgo, SA 0426-002 provides crucial evidence that a fraction of bright dEs have a disc infall origin, and are not part of the primordial cluster population.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا