Dynamics of a Persistent Insulator-to-Metal Transition in Strained Manganite Films


الملخص بالإنكليزية

Transition metal oxides possess complex free energy surfaces with competing degrees of freedom. Photoexcitation allows shaping of such rich energy landscapes. In epitaxially strained $mathrm{La_{0.67}Ca_{0.33}MnO_3}$, optical excitation with a sub-100 fs pulse above $2 mathrm{mJ/cm^2}$ leads to a persistent metallic phase below 100 K. Using single-shot optical and terahertz spectroscopy, we show that this phase transition is a multi-step process. We conclude that the phase transition is driven by partial charge order melting, followed by growth of the persistent metallic phase on longer timescales. A time-dependent Ginzburg-Landau model can describe the fast dynamics of the reflectivity, followed by longer timescale in-growth of the metallic phase.

تحميل البحث