ﻻ يوجد ملخص باللغة العربية
Many economic-theoretic models incorporate finiteness assumptions that, while introduced for simplicity, play a real role in the analysis. Such assumptions introduce a conceptual problem, as results that rely on finiteness are often implicitly nonrobust; for example, they may depend upon edge effects or artificial boundary conditions. Here, we present a unified method that enables us to remove finiteness assumptions, such as those on market sizes, time horizons, and datasets. We then apply our approach to a variety of matching, exchange economy, and revealed preference settings. The key to our approach is Logical Compactness, a core result from Propositional Logic. Building on Logical Compactness, in a matching setting, we reprove large-market existence results implied by Fleiners analysis, and (newly) prove both the strategy-proofness of the man-optimal stable mechanism in infinite markets and an infinite-market version of Nguyen and Vohras existence result for near-feasible stable matchings with couples. In a trading-network setting, we prove that the Hatfield et al. result on existence of Walrasian equilibria extends to infinite markets. In a dynamic matching setting, we prove that Pereyras existence result for dynamic two-sided matching markets extends to a doubly infinite time horizon. Finally, beyond existence and characterization of solutions, in a revealed-preference setting we reprove Renys infinite-data version of Afriats theorem and (newly) prove an infinite-data version of McFadden and Richters characterization of rationalizable stochastic datasets.
In this paper we propose a theoretical model including a susceptible-infected-recovered-dead (SIRD) model of epidemic in a dynamic macroeconomic general equilibrium framework with agents mobility. The latter affect both their income (and consumption)
Given a set of agents with approval preferences over each other, we study the task of finding $k$ matchings fairly representing everyones preferences. We model the problem as an approval-based multiwinner election where the set of candidates consists
We study competition among contests in a general model that allows for an arbitrary and heterogeneous space of contest design, where the goal of the contest designers is to maximize the contestants sum of efforts. Our main result shows that optimal c
Computing market equilibria is a problem of both theoretical and applied interest. Much research focuses on the static case, but in many markets items arrive sequentially and stochastically. We focus on the case of online Fisher markets: individuals
A common practice in many auctions is to offer bidders an opportunity to improve their bids, known as a Best and Final Offer (BAFO) stage. This final bid can depend on new information provided about either the asset or the competitors. This paper exa