ترغب بنشر مسار تعليمي؟ اضغط هنا

CMB-HD: An Ultra-Deep, High-Resolution Millimeter-Wave Survey Over Half the Sky

95   0   0.0 ( 0 )
 نشر من قبل Neelima Sehgal
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A millimeter-wave survey over half the sky, that spans frequencies in the range of 30 to 350 GHz, and that is both an order of magnitude deeper and of higher-resolution than currently funded surveys would yield an enormous gain in understanding of both fundamental physics and astrophysics. By providing such a deep, high-resolution millimeter-wave survey (about 0.5 uK-arcmin noise and 15 arcsecond resolution at 150 GHz), CMB-HD will enable major advances. It will allow 1) the use of gravitational lensing of the primordial microwave background to map the distribution of matter on small scales (k~10/hMpc), which probes dark matter particle properties. It will also allow 2) measurements of the thermal and kinetic Sunyaev-Zeldovich effects on small scales to map the gas density and gas pressure profiles of halos over a wide field, which probes galaxy evolution and cluster astrophysics. In addition, CMB-HD would allow us to cross critical thresholds in fundamental physics: 3) ruling out or detecting any new, light (< 0.1eV), thermal particles, which could potentially be the dark matter, and 4) testing a wide class of multi-field models that could explain an epoch of inflation in the early Universe. Such a survey would also 5) monitor the transient sky by mapping the full observing region every few days, which opens a new window on gamma-ray bursts, novae, fast radio bursts, and variable active galactic nuclei. Moreover, CMB-HD would 6) provide a census of planets, dwarf planets, and asteroids in the outer Solar System, and 7) enable the detection of exo-Oort clouds around other solar systems, shedding light on planet formation. CMB-HD will deliver this survey in 5 years of observing half the sky, using two new 30-meter-class off-axis cross-Dragone telescopes to be located at Cerro Toco in the Atacama Desert. The telescopes will field about 2.4 million detectors (600,000 pixels) in total.



قيم البحث

اقرأ أيضاً

Opening up a new window of millimeter-wave observations that span frequency bands in the range of 30 to 500 GHz, survey half the sky, and are both an order of magnitude deeper (about 0.5 uK-arcmin) and of higher-resolution (about 10 arcseconds) than currently funded surveys would yield an enormous gain in understanding of both fundamental physics and astrophysics. In particular, such a survey would allow for major advances in measuring the distribution of dark matter and gas on small-scales, and yield needed insight on 1.) dark matter particle properties, 2.) the evolution of gas and galaxies, 3.) new light particle species, 4.) the epoch of inflation, and 5.) the census of bodies orbiting in the outer Solar System.
CMB-HD is a proposed ultra-deep (0.5 uk-arcmin), high-resolution (15 arcseconds) millimeter-wave survey over half the sky that would answer many outstanding questions in both fundamental physics of the Universe and astrophysics. This survey would be delivered in 7.5 years of observing 20,000 square degrees, using two new 30-meter-class off-axis cross-Dragone telescopes to be located at Cerro Toco in the Atacama Desert. Each telescope would field 800,000 detectors (200,000 pixels), for a total of 1.6 million detectors.
We study systematic effects from half-wave plates (HWPs) for cosmic microwave background (CMB) experiments using full-sky time-domain beam convolution simulations. Using an optical model for a fiducial spaceborne two-lens refractor telescope, we inve stigate how different HWP configurations optimized for dichroic detectors centred at 95 and 150 GHz impact the reconstruction of primordial B-mode polarization. We pay particular attention to possible biases arising from the interaction of frequency dependent HWP non-idealities with polarized Galactic dust emission and the interaction between the HWP and the instrumental beam. To produce these simulations, we have extended the capabilities of the publicly available beamconv code. To our knowledge, we produce the first time-domain simulations that include both HWP non-idealities and realistic full-sky beam convolution. Our analysis shows how certain achromatic HWP configurations produce significant systematic polarization angle offsets that vary for sky components with different frequency dependence. Our analysis also demonstrates that once we account for interactions with HWPs, realistic beam models with non-negligible cross-polarization and sidelobes will cause significant B-mode residuals that will have to be extensively modelled in some cases.
We present a point-source detection algorithm that employs the second order Spherical Mexican Hat wavelet filter (SMHW2), and use it on C-BASS northern intensity data to produce a catalogue of point-sources. This catalogue allows us to cross-check th e C-BASS flux-density scale against existing source surveys, and provides the basis for a source mask which will be used in subsequent C-BASS and cosmic microwave background (CMB) analyses. The SMHW2 allows us to filter the entire sky at once, avoiding complications from edge effects arising when filtering small sky patches. The algorithm is validated against a set of Monte Carlo simulations, consisting of diffuse emission, instrumental noise, and various point-source populations. The simulated source populations are successfully recovered. The SMHW2 detection algorithm is used to produce a $4.76,mathrm{GHz}$ northern sky source catalogue in total intensity, containing 1784 sources and covering declinations $deltageq-10^{circ}$. The C-BASS catalogue is matched with the Green Bank 6,cm (GB6) and Parkes-MIT-NRAO (PMN) catalogues over their areas of common sky coverage. From this we estimate the $90$ per cent completeness level to be approximately $610,mathrm{mJy}$, with a corresponding reliability of $98$ per cent, when masking the brightest $30$ per cent of the diffuse emission in the C-BASS northern sky map. We find the C-BASS and GB6 flux-density scales to be consistent with one another to within approximately $4$ per cent.
We measure the evolution of the velocity dispersion--temperature ($sigma_{rm v}$--$T_{rm X}$) relation up to $z = 1$ using a sample of 38 galaxy clusters drawn from the textit{XMM} Cluster Survey. This work improves upon previous studies by the use o f a homogeneous cluster sample and in terms of the number of high redshift clusters included. We present here new redshift and velocity dispersion measurements for 12 $z > 0.5$ clusters observed with the GMOS instruments on the Gemini telescopes. Using an orthogonal regression method, we find that the slope of the relation is steeper than that expected if clusters were self-similar, and that the evolution of the normalisation is slightly negative, but not significantly different from zero ($sigma_{rm v} propto T^{0.86 pm 0.14} E(z)^{-0.37 pm 0.33}$). We verify our results by applying our methods to cosmological hydrodynamical simulations. The lack of evolution seen in our data is consistent with simulations that include both feedback and radiative cooling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا