We argue that global F-theory compactifications to four dimensions generally exhibit higher rank Yukawa matrices from multiple geometric contributions known as Yukawa points. The holomorphic couplings furthermore have large hierarchies for generic complex structure moduli. Unlike local considerations, the compact setup realizes these features all through geometry, and requires no instanton corrections. As an example, we consider a concrete toy model with $SU(5) times U(1)$ gauge symmetry. From the geometry, we find two Yukawa points for the ${bf 10}_{-2} , bar{bf 5}_6 , bar{bf 5}_{-4}$ coupling, producing a rank two Yukawa matrix. Our methods allow us to track all complex structure dependencies of the holomorphic couplings and study the ratio numerically. This reveals hierarchies of ${cal O}(10^5)$ and larger on a full-dimensional subspace of the moduli space.