ﻻ يوجد ملخص باللغة العربية
FRB181228 was detected by the Molonglo Synthesis Radio Telescope (MOST) at a position and time coincident with Transiting Exoplanet Survey Satellite (TESS) observations, representing the first simultaneous multi-wavelength data collection for a Fast Radio Burst (FRB). The large imaged field-of-view of TESS allows a search over the uncertainty region produced by MOST. However, the TESS pixel scale of 21 and the Full Frame Image (FFI) cadence of 30 minutes is not optimal for the detection of an FOB with a possible millisecond duration. We search the TESS FFIs and find no events with a limiting TESS magnitude of 16, assuming a 30 minute event duration, corresponding to an optical flux density upper limit of approximately 2000 Jy for a ~ms signal duration, assuming no signal loss. In addition, the cosmic ray mitigation method for TESS significantly reduces its sensitivity to short timescale transients, which we quantify. We compare our results to the predictions of Yang, Zhang, and Wei (2019) and find that the upper limit is a factor of two thousand higher than the predicted maximum optical flux density. However, we find that if FRB181228 had occurred in the galaxy thought to host the nearest FRB detection to date (37 Mpc), an FOB may have been detectable by TESS. In the near future, when CHIME and ASKAP will detect hundreds to thousands of FRBs, TESS may be able to detect FOBs from those rare bright and nearby FRBs within this large population (if more sophisticated cosmic ray excision can be implemented).
In this work, we present the analysis of 976 814 FGKM dwarf and sub-giant stars in the TESS Full Frame Images (FFIs) of the Southern ecliptic hemisphere. We present a new pipeline, DIAmante, developed to extract optimized, multi-sector photometry fro
We report the discovery of two short-period massive giant planets from NASAs Transiting Exoplanet Survey Satellite (TESS). Both systems, TOI-558 (TIC 207110080) and TOI-559 (TIC 209459275), were identified from the 30-minute cadence Full Frame Images
We report the results of our search for pulsating subdwarf B stars in Full Frame Images, sampled at 30 min cadence and collected during Year 1 of the TESS mission. Year 1 covers most of the southern ecliptic hemisphere. The sample of objects we check
Warm Jupiters -- defined here as planets larger than 6 Earth radii with orbital periods of 8--200 days -- are a key missing piece in our understanding of how planetary systems form and evolve. It is currently debated whether Warm Jupiters form in sit
The majority of observed pixels on the Transiting Exoplanet Survey Satellite (TESS) are delivered in the form of full frame images (FFI). However, the FFIs contain systematic effects such as pointing jitter and scattered light from the Earth and Moon