ترغب بنشر مسار تعليمي؟ اضغط هنا

A Search of TESS Full Frame Images for a Simultaneous Optical Counterpart to FRB181228

58   0   0.0 ( 0 )
 نشر من قبل Steven Tingay
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

FRB181228 was detected by the Molonglo Synthesis Radio Telescope (MOST) at a position and time coincident with Transiting Exoplanet Survey Satellite (TESS) observations, representing the first simultaneous multi-wavelength data collection for a Fast Radio Burst (FRB). The large imaged field-of-view of TESS allows a search over the uncertainty region produced by MOST. However, the TESS pixel scale of 21 and the Full Frame Image (FFI) cadence of 30 minutes is not optimal for the detection of an FOB with a possible millisecond duration. We search the TESS FFIs and find no events with a limiting TESS magnitude of 16, assuming a 30 minute event duration, corresponding to an optical flux density upper limit of approximately 2000 Jy for a ~ms signal duration, assuming no signal loss. In addition, the cosmic ray mitigation method for TESS significantly reduces its sensitivity to short timescale transients, which we quantify. We compare our results to the predictions of Yang, Zhang, and Wei (2019) and find that the upper limit is a factor of two thousand higher than the predicted maximum optical flux density. However, we find that if FRB181228 had occurred in the galaxy thought to host the nearest FRB detection to date (37 Mpc), an FOB may have been detectable by TESS. In the near future, when CHIME and ASKAP will detect hundreds to thousands of FRBs, TESS may be able to detect FOBs from those rare bright and nearby FRBs within this large population (if more sophisticated cosmic ray excision can be implemented).



قيم البحث

اقرأ أيضاً

190 - M. Montalto 2020
In this work, we present the analysis of 976 814 FGKM dwarf and sub-giant stars in the TESS Full Frame Images (FFIs) of the Southern ecliptic hemisphere. We present a new pipeline, DIAmante, developed to extract optimized, multi-sector photometry fro m TESS FFIs and a classifier, based on the Random Forest technique, trained to discriminate plausible transiting planetary candidates from common false positives. A new statistical model was developed to provide the probability of correct identification of the source of variability. We restricted the planet search to the stars located in the least crowded regions of the sky and identified 396 transiting planetary candidates among which 252 are new detections. The candidates radius distribution ranges between 1 R$rm_{oplus}$ and 2.6 R$rm_J$ with median value of 1 R$rm_J$ and the period distribution ranges between 0.25 days and 105 days with median value of 3.8 days. The sample contains four long period candidates (P>50 days) one of which is new and 64 candidates with periods between 10 and 50 days (42 new ones). In the small planet radius domain (R<4 R$rm_{oplus}$) we found 39 candidates among which 15 are new detections. Additionally, we present 15 single transit events (14 new ones), a new candidate multi-planetary system and a novel candidate around a known TOI. By using {it Gaia} dynamical constraints we found that 70 objects show evidence of binarity. We release a catalog of the objects we analyzed and the corresponding lightcurves and diagnostic figures through the MAST and ExoFOP portals.
We report the discovery of two short-period massive giant planets from NASAs Transiting Exoplanet Survey Satellite (TESS). Both systems, TOI-558 (TIC 207110080) and TOI-559 (TIC 209459275), were identified from the 30-minute cadence Full Frame Images and confirmed using ground-based photometric and spectroscopic follow-up observations from TESSs Follow-up Observing Program Working Group. We find that TOI-558 b, which transits an F-dwarf ($M_{star}=1.349^{+0.064}_{-0.065} M_{odot}$, $R_{star}=1.496^{+0.042}_{-0.040} R_{odot}$, $T_{eff}=6466^{+95}_{-93}$ K, age $1.79^{+0.91}_{-0.73}$ Gyr) with an orbital period of 14.574 days, has a mass of $3.61pm0.15 M_J$, a radius of $1.086^{+0.041}_{-0.038} R_J$, and an eccentric (e=$0.300^{+0.022}_{-0.020}$) orbit. TOI-559 b transits a G-dwarf ($M_{star}=1.026pm0.057 M_{odot}$, $R_{star}=1.233^{+0.028}_{-0.026} R_{odot}$, $T_{eff}=5925^{+85}_{-76}$ K, age $1.79^{+0.91}_{-0.73}$ Gyr) in an eccentric (e=$0.151pm0.011$) 6.984-day orbit with a mass of $6.01^{+0.24}_{-0.23} M_J$ and a radius of $1.091^{+0.028}_{-0.025} R_J$. Our spectroscopic follow-up also reveals a long-term radial velocity trend for TOI-559, indicating a long-period companion. The statistically significant orbital eccentricity measured for each system suggests that these planets migrated to their current location through dynamical interactions. Interestingly, both planets are also massive ($>3 M_J$), adding to the population of massive hot Jupiters identified by TESS. Prompted by these new detections of high-mass planets, we analyzed the known mass distribution of hot Jupiters but find no significant evidence for multiple populations. TESS should provide a near magnitude-limited sample of transiting hot Jupiters, allowing for future detailed population studies.
We report the results of our search for pulsating subdwarf B stars in Full Frame Images, sampled at 30 min cadence and collected during Year 1 of the TESS mission. Year 1 covers most of the southern ecliptic hemisphere. The sample of objects we check ed for pulsations was selected from a subdwarf B stars database available to public. Only two positive detections have been achieved, however, as a by-product of our search we found 1807 variable objects, most of them not classified, hence their specific variability class cannot be confirmed at this stage. Our preliminary discoveries include: two new subdwarf B (sdB) pulsators, 26 variables with known sdB spectra, 83 non-classified pulsating stars, 83 eclipsing binaries (detached and semi-detached), a mix of 1535 pulsators and non-eclipsing binaries, two novae, and 77 variables with known (non-sdB) spectral classification. Among eclipsing binaries we identified two known HW Vir systems and four new candidates. The amplitude spectra of the two sdB pulsators are not rich in modes, but we derive estimates of the modal degree for one of them. In addition, we selected five sdBV candidates for mode identification among 83 pulsators and describe our results based on this preliminary analysis. Further progress will require spectral classification of the newly discovered variable stars, which hopefully include more subdwarf B stars.
Warm Jupiters -- defined here as planets larger than 6 Earth radii with orbital periods of 8--200 days -- are a key missing piece in our understanding of how planetary systems form and evolve. It is currently debated whether Warm Jupiters form in sit u, undergo disk or high eccentricity tidal migration, or have a mixture of origin channels. These different classes of origin channels lead to different expectations for Warm Jupiters properties, which are currently difficult to evaluate due to the small sample size. We take advantage of the TESS survey and systematically search for Warm Jupiter candidates around main-sequence host stars brighter than the TESS-band magnitude of 12 in the Full-Frame Images in Year 1 of the TESS Prime Mission data. We introduce a catalog of 55 Warm Jupiter candidates, including 19 candidates that were not originally released as TESS Objects of Interest (TOIs) by the TESS team. We fit their TESS light curves, characterize their eccentricities and transit-timing variations (TTVs), and prioritize a list for ground-based follow-up and TESS Extended Mission observations. Using hierarchical Bayesian modeling, we find the preliminary eccentricity distributions of our Warm-Jupiter-candidate catalog using a Beta distribution, a Rayleigh distribution, and a two-component Gaussian distribution as the functional forms of the eccentricity distribution. Additional follow-up observations will be required to clean the sample of false positives for a full statistical study, derive the orbital solutions to break the eccentricity degeneracy, and provide mass measurements.
The majority of observed pixels on the Transiting Exoplanet Survey Satellite (TESS) are delivered in the form of full frame images (FFI). However, the FFIs contain systematic effects such as pointing jitter and scattered light from the Earth and Moon that must be removed before downstream analysis. We present unpopular, an open-source Python package to de-trend TESS FFI light curves based on the causal pixel model method. Under the assumption that shared flux variations across multiple distant pixels are likely to be systematics, unpopular removes these common (i.e., popular) trends by modeling the systematics in a given pixels light curve as a linear combination of light curves from many other distant pixels. To prevent overfitting we employ ridge regression and a train-and-test framework where the data points being de-trended are separated from those used to obtain the model coefficients. We also allow for simultaneous fitting with a polynomial model to capture any long-term astrophysical trends. We validate our method by de-trending different sources (e.g., supernova, tidal disruption event, exoplanet-hosting star, fast rotating star) and comparing our light curves to those obtained by other pipelines when appropriate. We also show that unpopular is able to preserve sector-length astrophysical signals, allowing for the extraction of multi-sector light curves from the FFI data. The unpopular source code and tutorials are freely available online.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا