ﻻ يوجد ملخص باللغة العربية
We consider a binary bosonic condensate with weak mean-field (MF) residual repulsion, loaded in an array of nearly one-dimensional traps coupled by transverse hopping. With the MF force balanced by the effectively one-dimensional attraction, induced in each trap by the Lee-Hung-Yang correction (produced by quantum fluctuations around the MF state), stable onsite-centered and intersite-centered semi-discrete quantum droplets (QDs) emerge in the array, as fundamental ones and self-trapped vortices, with winding numbers, at least, up to 5, in both tightly-bound and quasi-continuum forms. The application of a relatively strong trapping potential leads to squeezing transitions, which increase the number of sites in fundamental QDs, and eventually replace vortex modes by fundamental or dipole ones. The results provide the first realization of stable semi-discrete vortex QDs, including ones with multiple vorticity.
We consider the dynamical model of a binary bosonic gas trapped in a symmetric dual-core cigar-shaped potential. The setting is modeled by a system of linearly-coupled one-dimensional Gross-Pitaevskii equations with the cubic self-repulsive terms and
We demonstrate a possibility of the creation of stable optical solitons combining one continuous and one discrete coordinate, with embedded vorticity, in an array of planar waveguides with intrinsic cubic-quintic nonlinearity. The same system may be
The article produces a brief review of some recent results which predict stable propagation of solitons and solitary vortices in models based on the nonlinear Schroedinger equation including fractional one- or two-dimensional diffraction and cubic or
We consider the existence, stability and dynamics of the nodeless state and fundamental nonlinear excitations, such as vortices, for a quasi-two-dimensional polariton condensate in the presence of pumping and nonlinear damping. We find a series of in
The rotation of a quantum liquid induces vortices to carry angular momentum. When the system is composed of multiple components that are distinguishable from each other, vortex cores in one component may be filled by particles of the other component,