Let $(X, Gamma)$ be a free minimal dynamical system, where $X$ is a compact separable Hausdorff space and $Gamma$ is a discrete amenable group. It is shown that, if $(X, Gamma)$ has a version of Rokhlin property (uniform Rokhlin property) and if $mathrm{C}(X)rtimesGamma$ has a Cuntz comparison on open sets, then the comparison radius of the crossed product C*-algebra $mathrm{C}(X) rtimes Gamma$ is at most half of the mean topological dimension of $(X, Gamma)$. These two conditions are shown to be satisfied if $Gamma = mathbb Z$ or if $(X, Gamma)$ is an extension of a free Cantor system and $Gamma$ has subexponential growth. The main tools being used are Cuntz comparison of diagonal elements of a subhomogeneous C*-algebra and small subgroupoids.