On overconvergent subsequencs of closed to rows classical Pade approximants


الملخص بالإنكليزية

Let $f$ be a power series with positive radius of convergence. In the present paper, we study the phenomenon of overconvergence of sequences of classical Pade approximants pi{n,m_n} associated with f, where m(n)<=m(n+1)<=m(n) and m(n) = o(n/log n), resp. m(n) = 0(n) as n is going to infiity. We extend classical results by J. Hadamard and A. A. Ostrowski related to overconvergent Taylor polynomials, as well as results by G. Lopez Lagomasino and A. Fernandes Infante concerning overconvergent subsequences of a fixed row of the Pade table.

تحميل البحث