ﻻ يوجد ملخص باللغة العربية
To decipher the mechanism of high temperature superconductivity, it is important to know how the superconducting pairing emerges from the unusual normal states of cuprate superconductors, including pseudogap, anomalous Fermi liquid and strange metal (SM). A long-standing issue under debate is how the superconducting pairing is formed and condensed in the SM phase because the superconducting transition temperature is the highest in this phase. Here, we report the first experimental observation of a pressure-induced crossover from two- to three-dimensional superconducting states in the optimally-doped Bi2Sr2CaCu2O8+delta bulk superconductor at a pressure above 2.8 GPa, through state-of-the-art in-situ high-pressure measurements of resistance, magnetoresistance and magnetic susceptibility. By analyzing the temperature dependence of resistance, we find that the two-dimensional (2D) superconducting transition exhibits a Berezinski-Kosterlitz-Thouless-like behavior. The emergence of this 2D superconducting transition provides direct and strong evidence that the SM state is predominantly 2D-like. This is important to a thorough understanding of the phase diagram of cuprate superconductors.
We use ionic liquid-assisted electric field effect to tune the carrier density in an electron-doped cuprate ultrathin film and cause a two-dimensional superconductor-insulator transition (SIT). The low upper critical field in this system allows us to
Motivated by recent advances in the fabrication of Josephson junctions in which the weak link is made of a low-dimensional non-superconducting material, we present here a systematic theoretical study of the local density of states (LDOS) in a clean 2
Angle-resolved photoemission spectroscopy (ARPES) is typically used to study only the occupied electronic band structure of a material. Here we use laser-based ARPES to observe a feature in bismuth-based superconductors that, in contrast, is related
Long-range order in quasi-one-dimensional (q1D) arrays of superconducting nanowires is established via a dimensional crossover from a fluctuating 1D regime to a phase-coherent 3D ground state. If a homogeneous crystalline superconductor exhibits suff
Magnetically mediated Cooper pairing is generally regarded as a key to establish the unified mechanism of unconventional superconductivity. One crucial evidence is the neutron spin resonance arising in the superconducting state, which is commonly int