ﻻ يوجد ملخص باللغة العربية
This paper presents a proof-of-concept demonstration of triaxial strain tomography from Bragg-edge neutron imaging within a three-dimensional sample. Bragg-edge neutron transmission can provide high-resolution images of the average through thickness strain within a polycrystalline material. This poses an associated rich tomography problem which seeks to reconstruct the full triaxial strain field from these images. The presented demonstration is an important step towards solving this problem, and towards a technique capable of studying the residual strain and stress within engineering components. A Gaussian process based approach is used that ensures the reconstruction satisfies equilibrium and known boundary conditions. This approach is demonstrated experimentally on a non-trivial steel sample with use of the RADEN instrument at the Japan Proton Accelerator Research Complex. Validation of the reconstruction is provided by comparison with conventional strain scans from the KOWARI constant-wavelength strain diffractometer at the Australian Nuclear Science and Technology Organisation and simulations via finite element analysis.
Energy resolved neutron transmission techniques can provide high-resolution images of strain within polycrystalline samples allowing the study of residual strain and stress in engineered components. Strain is estimated from such data by analysing fea
Several recent methods for tomographic reconstruction of stress and strain fields from Bragg-edge neutron strain images have been proposed in the literature. This paper presents an extension of a previously demonstrated approach based on Gaussian Pro
Plasma tomography consists in reconstructing the 2D radiation profile in a poloidal cross-section of a fusion device, based on line-integrated measurements along several lines of sight. The reconstruction process is computationally intensive and, in
Here we introduce a new reconstruction technique for two-dimensional Bragg Scattering Tomography (BST), based on the Radon transform models of [arXiv preprint, arXiv:2004.10961 (2020)]. Our method uses a combination of ideas from multibang control an
Nanoscale heterogeneity (including size, shape, strain, and defects) significantly impacts material properties and how they function. Bragg coherent x-ray imaging methods have emerged as a powerful tool to investigate, in three-dimensional detail, th