ﻻ يوجد ملخص باللغة العربية
The biological cell exhibits a fantastic range of behaviors, but ultimately these are governed by a handful of physical and chemical principles. Here we explore simple theory, known for decades and based on the simple thermodynamics of mixtures of ideal gases, which illuminates several key functions performed within the cell. Our focus is the free-energy-driven import and export of molecules, such as nutrients and other vital compounds, via transporter proteins. Complementary to a thermodynamic picture is a description of transporters via mass-action chemical kinetics, which lends further insights into biological machinery and free energy use. Both thermodynamic and kinetic descriptions can shed light on the fundamental non-equilibrium aspects of transport. On the whole, our biochemical-physics discussion will remain agnostic to chemical details, but we will see how such details ultimately enter a physical description through the example of the cellular fuel ATP.
One of the most intriguing results of single molecule experiments on proteins and nucleic acids is the discovery of functional heterogeneity: the observation that complex cellular machines exhibit multiple, biologically active conformations. The stru
A major challenge in molecular simulations is to describe denaturant-dependent folding of proteins order to make direct comparisons with {it in vitro} experiments. We use the molecular transfer model, which is currently the only method that accomplis
Equilibrium sampling of biomolecules remains an unmet challenge after more than 30 years of atomistic simulation. Efforts to enhance sampling capability, which are reviewed here, range from the development of new algorithms to parallelization to nove
Experiments indicate that unbinding rates of proteins from DNA can depend on the concentration of proteins in nearby solution. Here we present a theory of multi-step replacement of DNA-bound proteins by solution-phase proteins. For four different kin
The knowledge of the Free Energy Landscape topology is the essential key to understand many biochemical processes. The determination of the conformers of a protein and their basins of attraction takes a central role for studying molecular isomerizati