ترغب بنشر مسار تعليمي؟ اضغط هنا

Impact of elastic heterogeneity on the propagation of vibrations at finite temperatures in glasses

116   0   0.0 ( 0 )
 نشر من قبل Stefano Mossa
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Some aspects of how sound waves travel through disordered solids are still unclear. Recent work has characterized a feature of disordered solids which seems to influence vibrational excitations at the mesoscales, local elastic heterogeneity. Sound waves propagation has been demonstrated to be strongly affected by inhomogeneous mechanical features of the materials which add to the standard anharmonic couplings, amounting to extremely complex transport properties at finite temperatures. Here, we address these issues for the case of a simple atomic glass former, by Molecular Dynamics computer simulation. In particular, we focus on the transverse components of the vibrational excitations in terms of dynamic structure factors, and characterize the temperature dependence of sound dispersion and attenuation in an extended frequency range. We provide a complete picture of how elastic heterogeneity determines transport of vibrational excitations, also based on a direct comparison of the numerical data with the predictions of the heterogeneous elastic theory.



قيم البحث

اقرأ أيضاً

It is known by now that amorphous solids at zero temperature do not possess a nonlinear elasticity theory: besides the shear modulus which exists, all the higher order coefficients do not exist in the thermodynamic limit. Here we show that the same p henomenon persists up to temperatures comparable to the glass transition. The zero temperature mechanism due to the prevalence of dangerous plastic modes of the Hessian matrix is replaced by anomalous stress fluctuations that lead to the divergence of the variances of the higher order elastic coefficients. The conclusion is that in amorphous solids elasticity can never be decoupled from plasticity: the nonlinear response is very substantially plastic.
123 - Hajime Yoshino 2012
We discuss a microscopic scheme to compute the rigidity of glasses or the plateau modulus of supercooled liquids by twisting replicated liquids. We first summarize the method in the case of harmonic glasses with analytic potentials. Then we discuss h ow it can be extended to the case of repulsive contact systems : the hard sphere glass and related systems with repulsive contact potentials which enable the jamming transition at zero temperature. For the repulsive contact systems we find entropic rigidity which behaves similarly as the pressure in the low temperature limit: it is proportional to the temperature and tends to diverge approaching the jamming density with increasing volume fraction, which may account for experimental observations of rigidities of repulsive colloids and emulsions.
We image local structural rearrangements in soft colloidal glasses under small periodic perturbations induced by thermal cycling. Local structural entropy $S_{2}$ positively correlates with observed rearrangements in colloidal glasses. The high $S_{2 }$ values of the rearranging clusters in glasses indicate that fragile regions in glasses are structurally less correlated, similar to structural defects in crystalline solids. Slow-evolving high $S_{2}$ spots are capable of predicting local rearrangements long before the relaxations occur, while fluctuation-created high $S_{2}$ spots best correlate with local deformations right before the rearrangement events. Local free volumes are also found to correlate with particle rearrangements at extreme values, although the ability to identify relaxation sites is substantially lower than $S_{2}$. Our experiments provide an efficient structural identifier for the fragile regions in glasses, and highlight the important role of structural correlations in the physics of glasses.
Dynamical heterogeneities -- strong fluctuations near the glass transition -- are believed to be crucial to explain much of the glass transition phenomenology. One possible hypothesis for their origin is that they emerge from soft (Goldstone) modes a ssociated with a broken continuous symmetry under time reparametrizations. To test this hypothesis, we use numerical simulation data from four glass-forming models to construct coarse grained observables that probe the dynamical heterogeneity, and decompose the fluctuations of these observables into two transverse components associated with the postulated time-fluctuation soft modes and a longitudinal component unrelated to them. We find that as temperature is lowered and timescales are increased, the time reparametrization fluctuations become increasingly dominant, and that their correlation volumes grow together with the correlation volumes of the dynamical heterogeneities, while the correlation volumes for longitudinal fluctuations remain small.
We numerically study the evolution of the vibrational density of states $D(omega)$ of zero-temperature glasses when their kinetic stability is varied over an extremely broad range, ranging from poorly annealed glasses obtained by instantaneous quench es from above the onset temperature, to ultrastable glasses obtained by quenching systems thermalised below the experimental glass temperature. The low-frequency part of the density of states splits between extended and quasi-localized modes. Extended modes exhibit a boson peak crossing over to Debye behaviour ($D(omega) sim omega^2$) at low-frequency, with a strong correlation between the two regimes. Quasi-localized modes instead obey $D(omega) sim omega^4$, irrespective of the glass stability. However, the prefactor of this quartic law becomes smaller in more stable glasses, and the corresponding modes become more localized and sparser. Our work is the first numerical observation of quasi-localized modes in a regime relevant to experiments, and it establishes a direct connection between glass stability and soft vibrational motion in amorphous solids.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا