ﻻ يوجد ملخص باللغة العربية
We consider the generic divergence form second order parabolic equation with coefficients that are regular in the spatial variables and just measurable in time. We show that the spatial derivatives of its fundamental solution admit upper bounds that agree with the Aronson type estimate and only depend on the ellipticity constants of the equation and the L $infty$ norm of the spatial derivatives of its coefficients. We also study the corresponding stochastic partial differential equations and prove that under natural assumptions on the noise the equation admits a mild solution, given by anticipating stochastic integration.
Let $(Omega, mu)$ be a probability space endowed with an ergodic action, $tau$ of $( {mathbb R} ^n, +)$. Let $H(x,p; omega)=H_omega(x,p)$ be a smooth Hamiltonian on $T^* {mathbb R} ^n$ parametrized by $omegain Omega$ and such that $ H(a+x,p;tau_aomeg
This work is concerned with model reduction of stochastic differential equations and builds on the idea of replacing drift and noise coefficients of preselected relevant, e.g. slow variables by their conditional expectations. We extend recent results
Consider the following equation $$partial_t u_t(x)=frac{1}{2}partial _{xx}u_t(x)+lambda sigma(u_t(x))dot{W}(t,,x)$$ on an interval. Under Dirichlet boundary condition, we show that in the long run, the second moment of the solution grows exponentiall
In this paper, we investigate pointwise time analyticity of solutions to fractional heat equations in the settings of $mathbb{R}^d$ and a complete Riemannian manifold $mathrm{M}$. On one hand, in $mathbb{R}^d$, we prove that any solution $u=u(t,x)$ t
We construct a radially smooth positive ancient solution for energy critical semi-linear heat equation in $mathbb{R}^n$, $ngeq 7$. It blows up at the origin with the profile of multiple Talenti bubbles in the backward time infinity.