ﻻ يوجد ملخص باللغة العربية
We present a set of new analytic solutions aimed at self-consistently describing the spatially-averaged time evolution of the gas, stellar, metal, and dust content in an individual starforming galaxy hosted within a dark halo of given mass and formation redshift. Then, as an application, we show that our solutions, when coupled to specific prescriptions for parameter setting (inspired by in-situ galaxy-black hole coevolution scenarios) and merger rates (based on numerical simulations), can be exploited to reproduce the main statistical relationships followed by early-type galaxies and by their high-redshift starforming progenitors. Our analytic solutions allow to easily disentangle the diverse role of the main physical processes regulating galaxy formation, to quickly explore the related parameter space, and to make transparent predictions on spatially-averaged quantities. As such, our analytic solutions may provide a basis for improving the (subgrid) physical recipes presently implemented in theoretical approaches and numerical simulations, and can offer a benchmark for interpreting and forecasting current and future broadband observations of high-redshift starforming galaxies.
We generalize the analytic solutions presented in Pantoni et al. (2019) by including a simple yet effective description of wind recycling and galactic fountains, with the aim of self-consistently investigating the spatially-averaged time evolution of
We present results of optical broad-band and narrow-band Halpha observations of a sample of forty nearby early-type galaxies. The majority of sample galaxies are known to have dust in various forms viz. dust lanes, nuclear dust and patchy/filamentary
The chemical enrichment in the interstellar medium (ISM) of galaxies is regulated by several physical processes: stellar evolution, grain formation and destruction, galactic inflows and outflows. Understanding such processes is essential to follow th
I present an overview of new observations of atomic and molecular gas in early-type galaxies, focusing on the Atlas3D project. Our data on stellar kinematics, age and metallicity, and ionized gas kinematics allow us to place the cold gas into the bro
Observations of neutral hydrogen (HI) and molecular gas show that 50% of all nearby early-type galaxies (ETGs) contain some cold gas. Molecular gas is always found in small gas discs in the central region of the galaxy, while neutral hydrogen is ofte