ﻻ يوجد ملخص باللغة العربية
Define a permutation to be any sequence of distinct positive integers. Given two permutations p and s on disjoint underlying sets, we denote by p sh s the set of shuffles of p and s (the set of all permutations obtained by interleaving the two permutations). A permutation statistic is a function St whose domain is the set of permutations such that St(p) only depends on the relative order of the elements of p. A permutation statistic is shuffle compatible if the distribution of St on p sh s depends only on St(p) and St(s) and their lengths rather than on the individual permutations themselves. This notion is implicit in the work of Stanley in his theory of P-partitions. The definition was explicitly given by Gessel and Zhuang who proved that various permutation statistics were shuffle compatible using mainly algebraic means. This work was continued by Grinberg. The purpose of the present article is to use bijective techniques to give demonstrations of shuffle compatibility. In particular, we show how a large number of permutation statistics can be shown to be shuffle compatible using a few simple bijections. Our approach also leads to a method for constructing such bijective proofs rather than having to treat each one in an ad hoc manner. Finally, we are able to prove a conjecture of Gessel and Zhuang about the shuffle compatibility of a certain statistic.
Consider a permutation p to be any finite list of distinct positive integers. A statistic is a function St whose domain is all permutations. Let S(p,q) be the set of shuffles of two disjoint permutations p and q. We say that St is shuffle compatible
The chromatic polynomial and its generalization, the chromatic symmetric function, are two important graph invariants. Celebrated theorems of Birkhoff, Whitney, and Stanley show how both objects can be expressed in three different ways: as sums over
In this paper we answer a question posed by R. Stanley in his collection of Bijection Proof Problems (Problem 240). We present a bijective proof for the enumeration of walks of length $k$ a chess rook can move along on an $mtimes n$ board starting and ending on the same square.
Let $r(n,k)$ (resp. $s(n,k)$) be the number of Schroder paths (resp. little Schroder paths) of length $2n$ with $k$ hills, and set $r(0,0)=s(0,0)=1$. We bijectively establish the following recurrence relations: begin{align*} r(n,0)&=sumlimits_{j=0}^{
In 2008, Haglund, Morse and Zabrocki formulated a Compositional form of the Shuffle Conjecture of Haglund et al. In very recent work, Gorsky and Negut by combining their discoveries with the work of Schiffmann-Vasserot on the symmetric function side