ﻻ يوجد ملخص باللغة العربية
There has been a significant amount of work in the literature proposing semantic relaxation of concurrent data structures for improving scalability and performance. By relaxing the semantics of a data structure, a bigger design space, that allows weaker synchronization and more useful parallelism, is unveiled. Investigating new data structure designs, capable of trading semantics for achieving better performance in a monotonic way, is a major challenge in the area. We algorithmically address this challenge in this paper. We present an efficient, lock-free, concurrent data structure design framework for out-of-order semantic relaxation. Our framework introduces a new two dimensional algorithmic design, that uses multiple instances of a given data structure. The first dimension of our design is the number of data structure instances operations are spread to, in order to benefit from parallelism through disjoint memory access. The second dimension is the number of consecutive operations that try to use the same data structure instance in order to benefit from data locality. Our design can flexibly explore this two-dimensional space to achieve the property of monotonically relaxing concurrent data structure semantics for achieving better throughput performance within a tight deterministic relaxation bound, as we prove in the paper. We show how our framework can instantiate lock-free out-of-order queues, stacks, counters and dequeues. We provide implementations of these relaxed data structures and evaluate their performance and behaviour on two parallel architectures. Experimental evaluation shows that our two-dimensional data structures significantly outperform the respected previous proposed ones with respect to scalability and throughput performance. Moreover, their throughput increases monotonically as relaxation increases.
Data streaming relies on continuous queries to process unbounded streams of data in a real-time fashion. It is commonly demanding in computation capacity, given that the relevant applications involve very large volumes of data. Data structures act as
In the presence of dynamic insertions and deletions into a partially reconfigurable FPGA, fragmentation is unavoidable. This poses the challenge of developing efficient approaches to dynamic defragmentation and reallocation. One key aspect is to deve
The Jaccard similarity index is an important measure of the overlap of two sets, widely used in machine learning, computational genomics, information retrieval, and many other areas. We design and implement SimilarityAtScale, the first communication-
This paper proposes a general framework for adding linearizable iterators to a class of data structures that implement set operations. We introduce a condition on set operations, called local consistency, which informally states that set operations n
A streaming graph is a graph formed by a sequence of incoming edges with time stamps. Unlike static graphs, the streaming graph is highly dynamic and time related. In the real world, the high volume and velocity streaming graphs such as internet traf