ﻻ يوجد ملخص باللغة العربية
The search for effective methods to fabricate bulk single-phase quasicrystalline Al-Cu-Fe alloys is currently an important task. Crucial to solving this problem is to understand mechanisms of phase formation in this system. Here we study crystallization sequence during solidification as well as the conditions of solid phase formation in slowly solidified Al-Cu-Fe alloys in a wide range of compositions. Concentration dependencies of undercoolability were also constructed by differential thermal analysis method. These experimental results are compared with data on chemical short-range order in the liquid state determined from textit{ab initio} molecular dynamic simulations. We observe that main features of interatomic interaction in the Al-Cu-Fe alloys are similar for both liquid and solid states and they change in the vicinity of i-phase composition. In the concentration region, where the i-phase forms from the melt, both the undercoolability and the crystallization character depend on the temperature of the melts before cooling.
Understanding the mechanisms which relate properties of liquid and solid phases is crucial for fabricating new advanced solid materials, such as glasses, quasicrystals and high-entropy alloys. Here we address this issue for quasicrystal-forming Al-Cu
A low-temperature magnetism was revealed in a series of sigma-Fe(100-x)Mo(x) alloys (x=45-53). Its characterization has been done using vibrating sample magnetometry, Mossbauer spectroscopy, and ac magnetic susceptibility. The magnetic ordering tempe
On the basis of the density functional calculations in combination with the supercell approach, we report on a complete study of the influences of atomic arrangement and Ni substitution for Al on the ground state structural and magnetic properties fo
A series of nine samples of sigma-Fe_{100-x}Mo_x with 44<x<57 were synthesized by a sintering method. The samples were investigated experimentally and theoretically. Using X-ray diffraction techniques structural parameters such as lattice constants,
Ni$_{80}$Fe$_{20}$ (Py) and Py-Cu exhibit intriguing ultrafast demagnetization behavior, where the Ni magnetic moment shows a delayed response relative to the Fe [S. Mathias et al., PNAS {bf 109}, 4792 (2012)]. To unravel the mechanism responsible fo