ترغب بنشر مسار تعليمي؟ اضغط هنا

Simple foliated flows

80   0   0.0 ( 0 )
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe transversely oriented foliations of codimension one on closed manifolds that admit simple foliated flows.



قيم البحث

اقرأ أيضاً

For certain pseudo-Anosov flows $phi$ on closed $3$-manifolds, unpublished work of Agol--Gueritaud produces a veering triangulation $tau$ on the manifold $M$ obtained by deleting $phi$s singular orbits. We show that $tau$ can be realized in $M$ so th at its 2-skeleton is positively transverse to $phi$, and that the combinatorially defined flow graph $Phi$ embedded in $M$ uniformly codes $phi$s orbits in a precise sense. Together with these facts we use a modified version of the veering polynomial, previously introduced by the authors, to compute the growth rates of $phi$s closed orbits after cutting $M$ along certain transverse surfaces, thereby generalizing work of McMullen in the fibered setting. These results are new even in the case where the transverse surface represents a class in the boundary of a fibered cone of $M$. Our work can be used to study the flow $phi$ on the original closed manifold. Applications include counting growth rates of closed orbits after cutting along closed transverse surfaces, defining a continuous, convex entropy function on the `positive cone in $H^1$ of the cut-open manifold, and answering a question of Leininger about the closure of the set of all stretch factors arising as monodromies within a single fibered cone of a $3$-manifold. This last application connects to the study of endperiodic automorphisms of infinite-type surfaces and the growth rates of their periodic points.
We prove a quantitative estimate, with a power saving error term, for the number of simple closed geodesics of length at most $L$ on a compact surface equipped with a Riemannian metric of negative curvature. The proof relies on the exponential mixing rate for the Teichm{u}ller geodesic flow.
We consider the relation between simplicial volume and two of its variants: the stable integral simplicial volume and the integral foliated simplicial volume. The definition of the latter depends on a choice of a measure preserving action of the fund amental group on a probability space. We show that integral foliated simplicial volume is monotone with respect to weak containment of measure preserving actions and yields upper bounds on (integral) homology growth. Using ergodic theory we prove that simplicial volume, integral foliated simplicial volume and stable integral simplicial volume coincide for closed hyperbolic 3-manifolds and closed aspherical manifolds with amenable residually finite fundamental group (being equal to zero in the latter case). However, we show that integral foliated simplicial volume and the classical simplicial volume do not coincide for hyperbolic manifolds of dimension at least 4.
Integral foliated simplicial volume is a version of simplicial volume combining the rigidity of integral coefficients with the flexibility of measure spaces. In this article, using the language of measure equivalence of groups we prove a proportional ity principle for integral foliated simplicial volume for aspherical manifolds and give refined upper bounds of integral foliated simplicial volume in terms of stable integral simplicial volume. This allows us to compute the integral foliated simplicial volume of hyperbolic 3-manifolds. This is complemented by the calculation of the integral foliated simplicial volume of Seifert 3-manifolds.
Given two finite covers $p: X to S$ and $q: Y to S$ of a connected, oriented, closed surface $S$ of genus at least $2$, we attempt to characterize the equivalence of $p$ and $q$ in terms of which curves lift to simple curves. Using Teichmuller theory and the complex of curves, we show that two regular covers $p$ and $q$ are equivalent if for any closed curve $gamma subset S$, $gamma$ lifts to a simple closed curve on $X$ if and only if it does to $Y$. When the covers are abelian, we also give a characterization of equivalence in terms of which powers of simple closed curves lift to closed curves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا