ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-linear second-order topological insulators

125   0   0.0 ( 0 )
 نشر من قبل Romain Fleury
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate, both theoretically and experimentally, the concept of non-linear second-order topological insulators, a class of bulk insulators with quantized Wannier centers and a bulk polarization directly controlled by the level of non-linearity. We show that one-dimensional edge states and zero-dimensional corner states can be induced in a trivial crystal insulator made of evanescently coupled resonators with linear and nonlinear coupling coefficients, simply by tuning the excitation intensity. This allows global external control over topological phase transitions and switching to a phase with non-zero bulk polarization, without requiring any structural or geometrical changes. We further show how these non-linear effects enable dynamic tuning of the spectral properties and localization of the topological edge and corner states. Such self-induced second-order topological insulators, which can be found and implemented in a wide variety of physical platforms ranging from electronics to microwaves, acoustics, and optics, hold exciting promises for reconfigurable topological energy confinement, power harvesting, data storage, and spatial management of high-intensity fields.



قيم البحث

اقرأ أيضاً

Second-order topological insulators are crystalline insulators with a gapped bulk and gapped crystalline boundaries, but topologically protected gapless states at the intersection of two boundaries. Without further spatial symmetries, five of the ten Altland-Zirnbauer symmetry classes allow for the existence of such second-order topological insulators in two and three dimensions. We show that reflection symmetry can be employed to systematically generate examples of second-order topological insulators and superconductors, although the topologically protected states at corners (in two dimensions) or at crystal edges (in three dimensions) continue to exist if reflection symmetry is broken. A three-dimensional second-order topological insulator with broken time-reversal symmetry shows a Hall conductance quantized in units of $e^2/h$.
Topological insulators with unique gapless edge states have revolutionized the understanding of electronic properties in solid materials. These gapless edge states are dictated by the topological invariants associated with the quantization of general ized Berry phases of the bulk energy bands through the bulk-edge correspondence, a paradigm that can also be extended to acoustic and photonic systems. Recently, high-order topological insulators (HOTIs) are proposed and observed, where the bulk topological invariants result in gapped edge states and in-gap corner or hinge states, going beyond the conventional bulk-edge correspondence. However, the existing studies on HOTIs are restricted to tight-binding models which cannot describe the energy bands of conventional sonic/photonic crystals that are due to multiple Bragg scatterings. Here, we report theoretical prediction and experimental observation of acoustic second-order topological insulators (SOTI) in two-dimensional (2D) sonic crystals (SCs) beyond the tight-binding picture. We observe gapped edge states and degenerate in-gap corner states which manifest bulk-edge correspondence in a hierarchy of dimensions. Moreover, topological transitions in both the bulk and edge states can be realized by tuning the angle of the meta-atoms in each unit-cell, leading to various conversion among bulk, edge and corner states. The emergent properties of the acoustic SOTIs open up a new route for topological designs of robust localized acoustic modes as well as topological transfer of acoustic energy between 2D, 1D and 0D modes.
Second-order topological insulators and superconductors have a gapped excitation spectrum in bulk and along boundaries, but protected zero modes at corners of a two-dimensional crystal or protected gapless modes at hinges of a three-dimensional cryst al. A second-order topological phase can be induced by the presence of a bulk crystalline symmetry. Building on Shiozaki and Satos complete classification of bulk crystalline phases with an order-two crystalline symmetry [Phys. Rev. B {bf 90}, 165114 (2014)], such as mirror reflection, twofold rotation, or inversion symmetry, we classify all corresponding second-order topological insulators and superconductors. The classification also includes antiunitary symmetries and antisymmetries.
Bloch oscillations (BOs) are a fundamental phenomenon by which a wave packet undergoes a periodic motion in a lattice when subjected to an external force. Observed in a wide range of synthetic lattice systems, BOs are intrinsically related to the geo metric and topological properties of the underlying band structure. This has established BOs as a prominent tool for the detection of Berry phase effects, including those described by non-Abelian gauge fields. In this work, we unveil a unique topological effect that manifests in the BOs of higher-order topological insulators through the interplay of non-Abelian Berry curvature and quantized Wilson loops. It is characterized by an oscillating Hall drift that is synchronized with a topologically-protected inter-band beating and a multiplied Bloch period. We elucidate that the origin of this synchronization mechanism relies on the periodic quantum dynamics of Wannier centers. Our work paves the way to the experimental detection of non-Abelian topological properties in synthetic matter through the measurement of Berry phases and center-of-mass displacements.
Three-dimensional topological (crystalline) insulators are materials with an insulating bulk, but conducting surface states which are topologically protected by time-reversal (or spatial) symmetries. Here, we extend the notion of three-dimensional to pological insulators to systems that host no gapless surface states, but exhibit topologically protected gapless hinge states. Their topological character is protected by spatio-temporal symmetries, of which we present two cases: (1) Chiral higher-order topological insulators protected by the combination of time-reversal and a four-fold rotation symmetry. Their hinge states are chiral modes and the bulk topology is $mathbb{Z}_2$-classified. (2) Helical higher-order topological insulators protected by time-reversal and mirror symmetries. Their hinge states come in Kramers pairs and the bulk topology is $mathbb{Z}$-classified. We provide the topological invariants for both cases. Furthermore we show that SnTe as well as surface-modified Bi$_2$TeI, BiSe, and BiTe are helical higher-order topological insulators and propose a realistic experimental setup to detect the hinge states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا