On the Configuration Space of Steiner Minimal Trees


الملخص بالإنكليزية

Among other results, we prove the following theorem about Steiner minimal trees in $d$-dimensional Euclidean space: if two finite sets in $mathbb{R}^d$ have unique and combinatorially equivalent Steiner minimal trees, then there is a homotopy between the two sets that maintains the uniqueness and the combinatorial structure of the Steiner minimal tree throughout the homotopy.

تحميل البحث