ﻻ يوجد ملخص باللغة العربية
Active M-dwarfs are known to produce bursty radio emission, and multi-wavelength studies have shown that Solar-like magnetic activity occurs in these stars. However, coherent bursts from active M-dwarfs have often been difficult to interpret in the Solar activity paradigm. We present Australian Square Array Pathfinder (ASKAP) observations of UV Ceti at a central frequency of 888 MHz. We detect several periodic, coherent pulses occurring over a timescale consistent with the rotational period of UV Ceti. The properties of the pulsed emission show that they originate from the electron cyclotron maser instability, in a cavity $sim7$ orders of magnitude less dense than the mean coronal density at the estimated source altitude. These results confirm that auroral activity can occur in active M-dwarfs, suggesting that these stars mark the beginning of the transition from Solar-like to auroral magnetospheric behaviour. These results demonstrate the capabilities of ASKAP for detecting polarized, coherent bursts from active stars and other systems.
We have detected four flares from UV Ceti at 154 MHz using the Murchison Widefield Array. The flares have flux densities between 10--65 mJy --- a factor of 100 fainter than most flares in the literature at these frequencies --- and are only detected
We study the higher-harmonic generation (HHG) using elliptically polarized two-color driving fields. The HHG via bi-chromatic counter-rotating laser fields is a promising source of circularly polarized ultrashort XUV radiation at the attosecond time
Bright, short radio bursts are emitted by sources at a large range of distances: from the nearby Crab pulsar to remote Fast Radio Bursts (FRBs). FRBs are likely to originate from distant neutron stars, but our knowledge of the radio pulsar population
We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of Neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distr
We experimentally investigate generation of molecular nitrogen-ion lasers with two femtosecond laser pulses at different wavelengths. The first pulse serves as the pump which ionizes the nitrogen molecules and excites the molecular ions to excited el