ﻻ يوجد ملخص باللغة العربية
It is well known that the observed Higgs mass is more naturally explained in the NMSSM than in the MSSM. Without any violation of this success, there are variants on the NMSSM which can lead to new phenomenologies. In this study we propose a new variant of NMSSM by imposing an unbroken $R$ symmetry. We firstly identify the minimal structure of such scenario from the perspective of both simplicity and viability, then compare model predictions to current experimental limits, and finally highlight main features that differ from the well-known scenarios.
From the current ATLAS and CMS results on Higgs boson mass and decay rates, the NMSSM is obviously better than the MSSM. To explain the fine-tuning problems such as gauge hiearchy problem and strong CP problem in the SM, we point out that supersymmet
Electroweak precision measurements, encoded in the oblique parameters, give strong constraints on physics beyond the Standard Model. The oblique parameters S, T, U (V, W, X) are calculated in the next-to-minimal supersymmetric model (NMSSM). We outli
We discuss a possibility that the domain wall problem in the next-to-minimal supersymmetric standard model is alleviated without introducing a small explicit $Z_3$ breaking term by analyzing the evolution of the singlet scalar field within an inflati
A highly bino-like Dark Matter (DM), which is the Lightest Supersymmetric Particle (LSP), could be motivated by the stringent upper bounds on the DM direct detection rates. This is especially so when its mass is around or below 100 GeV for which such
The strategy for assigning $Z_{4R}$ parity in the string compactification is presented. For the visible sector, an anti-SU(5) (flipped-SU(5)) grand unification (GUT) model with three families is used to reduce the number of representations compared t