ﻻ يوجد ملخص باللغة العربية
Permutation polynomials over finite fields have important applications in many areas of science and engineering such as coding theory, cryptography, combinatorial design, etc. In this paper, we construct several new classes of permutation polynomials, and the necessities of some permutation polynomials are studied.
For the finite field $mathbb{F}_{2^{3m}}$, permutation polynomials of the form $(x^{2^m}+x+delta)^{s}+cx$ are studied. Necessary and sufficient conditions are given for the polynomials to be permutation polynomials. For this, the structures and properties of the field elements are analyzed.
Four recursive constructions of permutation polynomials over $gf(q^2)$ with those over $gf(q)$ are developed and applied to a few famous classes of permutation polynomials. They produce infinitely many new permutation polynomials over $gf(q^{2^ell})$
Let $mathbb{F}_q$ denote the finite fields with $q$ elements. The permutation behavior of several classes of infinite families of permutation polynomials over finite fields have been studied in recent years. In this paper, we continue with their stud
In this paper, a recent method to construct complementary sequence sets and complete complementary codes by Hadamard matrices is deeply studied. By taking the algebraic structure of Hadamard matrices into consideration, our main result determine the
It is an important task to construct quantum maximum-distance-separable (MDS) codes with good parameters. In the present paper, we provide six new classes of q-ary quantum MDS codes by using generalized Reed-Solomon (GRS) codes and Hermitian construc