ﻻ يوجد ملخص باللغة العربية
This paper presents a detailed analysis of the heat kernel on an $(mathbb{N}timesmathbb{N})$-parameter family of compact metric measure spaces, which do not satisfy the volume doubling property. In particular, uniform bounds of the heat kernel and its Lipschitz continuity, as well as the continuity of the corresponding heat semigroup are studied; a specific example is presented revealing a logarithmic correction. The estimates are further applied to derive several functional inequalities of interest in describing the convergence to equilibrium of the diffusion process.
This paper provides explicit pointwise formulas for the heat kernel on compact metric measure spaces that belong to a $(mathbb{N}timesmathbb{N})$-parameter family of fractals which are regarded as projective limits of metric measure graphs and do not
We construct and study a family of continuum random polymer measures $mathbf{M}_{r}$ corresponding to limiting partition function laws recently derived in a weak-coupling regime of polymer models on hierarchical graphs with marginally relevant disord
It is known that the couple formed by the two dimensional Brownian motion and its Levy area leads to the heat kernel on the Heisenberg group, which is one of the simplest sub-Riemannian space. The associated diffusion operator is hypoelliptic but not
We introduce hybrid fractals as a class of fractals constructed by gluing several fractal pieces in a specific manner and study energy forms and Laplacians on them. We consider in particular a hybrid based on the $3$-level Sierpinski gasket, for whic
We give a direct proof of the sharp two-sided estimates, recently established in [4,9], for the Dirichlet heat kernel of the fractional Laplacian with gradient perturbation in $C^{1, 1}$ open sets by using Duhamel formula. We also obtain a gradient e