ﻻ يوجد ملخص باللغة العربية
The main subject of the thesis is the study of stationary nonequilibrium states trough the use of microscopic stochastic models that encode the physical interaction in the rules of Markovian dynamics for particles configurations. These models are known as interacting particles systems and are simple enough to be treated analytically but also complex enough to capture essential physical behaviours. The thesis is organized in two parts. The part 1 is devoted to the microscopic theory of the stationary states. We characterize these states developing some general structures that have an interest in themselves. In this part there is an interlude dedicated to discrete calculus on discrete manifolds with an exposition a little bit different to the one available in literature and some original definitions. The part 2 studies the problem macroscopically. In particular we consider the large deviations asymptotic behavior for a class of solvable one dimensional models of heat conduction. Both part 1 and 2 begin with an introduction of motivational character followed by an overview of the relevant results and a summary explaining the organization. Even tough the two parts are strictly connected they can be read independently after chapter 1. The material is presented in such a way to be self-consistent as much as possible.
A stochastic dynamics has a natural decomposition into a drift capturing mean rate of change and a martingale increment capturing randomness. They are two statistically uncorrelated, but not necessarily independent mechanisms contributing to the over
We study two interacting identical run and tumble particles (RTPs) in one dimension. Each particle is driven by a telegraphic noise, and in some cases, also subjected to a thermal white noise with a corresponding diffusion constant $D$. We are intere
We consider a macroscopic system in contact with boundary reservoirs and/or under the action of an external field. We discuss the case in which the external forcing depends explicitly on time and drives the system from a nonequilibrium state to anoth
Starting from the microscopic description of a normal fluid in terms of any kind of local interacting many-particle theory we present a well defined step by step procedure to derive the hydrodynamic equations for the macroscopic phenomena. We specify
We study the structure of stationary non equilibrium states for interacting particle systems from a microscopic viewpoint. In particular we discuss two different discrete geometric constructions. We apply both of them to determine non reversible tran