ﻻ يوجد ملخص باللغة العربية
The transitivity degree of a group $G$ is the supremum of all integers $k$ such that $G$ admits a faithful $k$-transitive action. Few obstructions are known to impose an upper bound on the transitivity degree for infinite groups. The results of this article provide two new classes of groups whose transitivity degree can be computed, as a corollary of a classification of all $3$-transitive actions of these groups. More precisely, suppose that $G$ is a subgroup of the homeomorphism group of the circle $mathsf{Homeo}(mathbb{S}^1)$ or the automorphism group of a tree $mathsf{Aut}(mathbb{T})$. Under natural assumptions on the stabilizers of the action of $G$ on $mathbb{S}^1$ or $partial mathbb{T}$, we use the dynamics of this action to show that every faithful action of $G$ on a set that is at least $3$-transitive must be conjugate to the action of $G$ on one of its orbits in $mathbb{S}^1$ or $partial mathbb{T}$.
We study two transitivity properties for group actions on buildings, called Weyl transitivity and strong transitivity. Following hints by Tits, we give examples involving anisotropic algebraic groups to show that strong transitivity is strictly stron
An action of a group $G$ is highly transitive if $G$ acts transitively on $k$-tuples of distinct points for all $k geq 1$. Many examples of groups with a rich geometric or dynamical action admit highly transitive actions. We prove that if a group $G$
In this monograph, we give an account of the relationship between the algebraic structure of finitely generated and countable groups and the regularity with which they act on manifolds. We concentrate on the case of one--dimensional manifolds, culmin
A closed subgroup $H$ of a locally compact group $G$ is confined if the closure of the conjugacy class of $H$ in the Chabauty space of $G$ does not contain the trivial subgroup. We establish a dynamical criterion on the action of a totally disconnect
The set of equivalence classes of cobounded actions of a group on different hyperbolic metric spaces carries a natural partial order. The resulting poset thus gives rise to a notion of the best hyperbolic action of a group as the largest element of t