ﻻ يوجد ملخص باللغة العربية
The aim of this study is to analyze the destabilization of Alfven Eigenmodes (AE) by multiple energetic particles (EP) species in DIII-D and LHD discharges. We use the reduced MHD equations to describe the linear evolution of the poloidal flux and the toroidal component of the vorticity in a full 3D system, coupled with equations of density and parallel velocity moments for the energetic particles species, including the effect of the acoustic modes, diamagnetic currents and helical couplings. We add the Landau damping and resonant destabilization effects using a closure relation. The simulations with multiple NBI lines show three different regimes: the non damped regime where the multi beam AEs growth rate is larger compared to the growth rate of the AEs destabilized by the individual NBI lines, the interaction regime where the multi beam AEs growth rate is smaller than the single NBI AEs and the damped regime where the AEs are suppressed. Operations in the damped regime requires EP species with different density profile flatness or gradient locations. In addition, the AEs growth rate in the interaction regime is further reduced if the combined NBI lines have similar beam temperatures and the beta of the NBI line with flatter EP density profile increases. Then, optimization trends are identified in DIII-D high poloidal beta and LHD low density / magnetic field discharges with multiple NBI lines as well as the configuration requirements to operate in the damped and interaction regimes. DIII-D simulations show a decrease of the n=2 to 6 AEs growth rate and n=1 AE are stabilized in the LHD case. The helical coupling effects in LHD simulations lead to a transition from the interaction to the damped regime of the n=2,-8,12 helical family.
The aim of this study is to analyze the stability of the Alfven eigenmodes (AE) in the Chinese First Quasi-axisymmetric Stellarator (CFQS). The AE stability is calculated using the code FAR3d that solves the reduced MHD equations to describe the line
The aim of the present study is to analyze the stability of the pressure gradient driven modes (PM) and Alfven eigenmodes (AE) in the Large Helical Device (LHD) plasma if the rotational transform profile is modified by the current drive of the tangen
This paper presents a study of the interaction between Alfven modes and zonal structures, considering a realistic ASDEX Upgrade equilibrium. The results of gyrokinetic simulations with the global, electromagnetic, particle-in-cell code ORB5 are prese
Recent upgrades in H-1 power supplies have enabled the operation of the H-1 experiment at higher heating powers than previously attainable. A heating power scan in mixed hydrogen/helium plasmas reveals a change in mode activity with increasing heatin
Spontaneous nonlinear excitation of geodesic acoustic mode (GAM) by toroidal Alfven eigenmode (TAE) is investigated using nonlinear gyrokinetic theory. It is found that, the nonlinear decay process depends on thermal ion beta value. Here, beta is the