ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatially Resolved Water Emission from Gravitationally Lensed Dusty Star Forming Galaxies at z $sim$ 3

83   0   0.0 ( 0 )
 نشر من قبل Sreevani Jarugula
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Water ($rm H_{2}O$), one of the most ubiquitous molecules in the universe, has bright millimeter-wave emission lines easily observed at high-redshift with the current generation of instruments. The low excitation transition of $rm H_{2}O$, p$-$$rm H_{2}O$(202 $-$ 111) ($ u_{rest}$ = 987.927 GHz) is known to trace the far-infrared (FIR) radiation field independent of the presence of active galactic nuclei (AGN) over many orders-of-magnitude in FIR luminosity (L$_{rm FIR}$). This indicates that this transition arises mainly due to star formation. In this paper, we present spatially ($sim$0.5 arcsec corresponding to $sim$1 kiloparsec) and spectrally resolved ($sim$100 kms$^{-1}$) observations of p$-$$rm H_{2}O$(202 $-$ 111) in a sample of four strong gravitationally lensed high-redshift galaxies with the Atacama Large Millimeter/submillimeter Array (ALMA). In addition to increasing the sample of luminous ($ > $ $10^{12}$L$_{odot}$) galaxies observed with $rm H_{2}O$, this paper examines the L$_{rm H_{2}O}$/L$_{rm FIR}$ relation on resolved scales for the first time at high-redshift. We find that L$_{rm H_{2}O}$ is correlated with L$_{rm FIR}$ on both global and resolved kiloparsec scales within the galaxy in starbursts and AGN with average L$_{rm H_{2}O}$/L$_{rm FIR}$ =$2.76^{+2.15}_{-1.21}times10^{-5}$. We find that the scatter in the observed L$_{rm H_{2}O}$/L$_{rm FIR}$ relation does not obviously correlate with the effective temperature of the dust spectral energy distribution (SED) or the molecular gas surface density. This is a first step in developing p$-$$rm H_{2}O$(202 $-$ 111) as a resolved star formation rate (SFR) calibrator.



قيم البحث

اقرأ أيضاً

We report the detection of a massive neutral gas outflow in the z=2.09 gravitationally lensed Dusty Star-Forming Galaxy HATLASJ085358.9+015537 (G09v1.40), seen in absorption with the OH+(1_1-1_0) transition using spatially resolved (0.5x0.4) Atacama Large Millimeter/submillimeter Array (ALMA) observations. The blueshifted OH+ line is observed simultaneously with the CO(9-8) emission line and underlying dust continuum. These data are complemented by high angular resolution (0.17x0.13) ALMA observations of CH+(1-0) and underlying dust continuum, and Keck 2.2 micron imaging tracing the stellar emission. The neutral outflow, dust, dense molecular gas and stars all show spatial offsets from each other. The total atomic gas mass of the observed outflow is 6.7x10^9 M_sun, >25% as massive as the gas mass of the galaxy. We find that a conical outflow geometry best describes the OH+ kinematics and morphology and derive deprojected outflow properties as functions of possible inclination (0.38 deg-64 deg). The neutral gas mass outflow rate is between 83-25400 M_sun/yr, exceeding the star formation rate (788+/-300 M_sun/yr) if the inclination is >3.6 deg (mass-loading factor = 0.3-4.7). Kinetic energy and momentum fluxes span 4.4-290x10^9 L_sun and 0.1-3.7x10^37 dyne, respectively (energy-loading factor = 0.013-16), indicating that the feedback mechanisms required to drive the outflow depend on the inclination assumed. We derive a gas depletion time between 29 and 1 Myr, but find that the neutral outflow is likely to remain bound to the galaxy, unless the inclination is small, and may be re-accreted if additional feedback processes do not occur.
126 - J. P. McKean 2010
Luminous extragalactic water masers are known to be associated with AGN and have provided accurate estimates for the mass of the central supermassive black hole and the size and structure of the accretion disk in nearby galaxies. To find water masers at much higher redshifts, we have begun a survey of known gravitationally lensed quasars and star-forming galaxies. In this paper, we present a search for 22 GHz (rest frame) water masers toward five dusty, gravitationally lensed quasars and star-forming galaxies at redshifts 2.3--2.9 with the Effelsberg telescope and the EVLA. Our observations do not find any new definite examples of high redshift water maser galaxies, suggesting that large reservoirs of dust and gas are not a sufficient condition for powerful water maser emission. However, we do find the tentative detection of a water maser system in the active galaxy IRAS 10214+4724 at redshift 2.285. Our survey has now doubled the number of lensed galaxies and quasars that have been searched for high redshift water masers. We present an analysis of the high redshift water maser luminosity function that is based on the results presented here and from the only cosmologically distant (z > 1) water maser galaxy found thus far, MG J0414+0534 at redshift 2.64. By comparing with the luminosity function locally and at moderate redshifts, we find that there must be some evolution in the luminosity function of water maser galaxies at high redshifts. By assuming a moderate evolution [(1 + z )^4] in the luminosity function, we find that blind surveys for water maser galaxies are only worthwhile with extremely high sensitivity like that of the planned Square Kilometre Array. However, instruments like the EVLA and MeerKAT will be capable of detecting water maser systems similar to the one found from MG J0414+0534 through targeted observations.
73 - H. Nayyeri , M. Keele , A. Cooray 2016
We present a list of candidate gravitationally lensed dusty star-forming galaxies (DSFGs) from the HerMES Large Mode Survey (HeLMS) and the Herschel Stripe 82 Survey (HerS). Together, these partially overlapping surveys cover 372 deg$^{2}$ on the sky . After removing local spiral galaxies and known radio-loud blazars, our candidate list of lensed DSFGs is composed of 77 sources with 500 $mu$m flux densities ($S_{500}$) greater than 100 mJy. Such sources are dusty starburst galaxies similar to the first bright Sub Millimeter Galaxies (SMGs) discovered with SCUBA. We expect a large fraction of this list to be strongly lensed, with a small fraction made up of bright SMG-SMG mergers that appear as Hyper-Luminous Infrared Galaxies (HyLIRGs; $rm L_{IR}>10^{13} L_{odot}$). Thirteen of the 77 candidates have spectroscopic redshifts from CO spectroscopy with ground-based interferometers, putting them at $z>1$ and well above the redshift of the foreground lensing galaxies. The surface density of our sample is 0.21 $pm$ 0.03 deg$^{-2}$. We present follow-up imaging of a few of the candidates confirming their lensing nature. The sample presented here is an ideal tool for higher resolution imaging and spectroscopic observations to understand detailed properties of starburst phenomena in distant galaxies.
186 - Etsuko Mieda 2016
We present results from IROCKS (Intermediate Redshift OSIRIS Chemo-Kinematic Survey) for sixteen z~1 and one z~1.4 star-forming galaxies. All galaxies were observed with OSIRIS with the laser guide star adaptive optics system at Keck Observatory. We use rest-frame nebular Ha emission lines to trace morphologies and kinematics of ionized gas in star-forming galaxies on sub-kiloparsec physical scales. We observe elevated velocity dispersions (sigma > 50 km/s) seen in z > 1.5 galaxies persist at z~1 in the integrated galaxies. Using an inclined disk model and the ratio of v/sigma, we find that 1/3 of the z~1 sample are disk candidates while the other 2/3 of the sample are dominated by merger-like and irregular sources. We find that including extra attenuation towards HII regions derived from stellar population synthesis modeling brings star formation rates (SFR) using Ha and stellar population fit into a better agreement. We explore properties of compact Ha sub-component, or clump, at z~1 and find that they follow a similar size-luminosity relation as local HII regions but are scaled-up by an order of magnitude with higher luminosities and sizes. Comparing the z~1 clumps to other high-redshift clump studies, we determine that the clump SFR surface density evolves as a function of redshift. This may imply clump formation is directly related to the gas fraction in these systems and support disk fragmentation as their formation mechanism since gas fraction scales with redshift.
Using the Australia Telescope Compact Array (ATCA), we conducted a survey of CO J=1-0 and J=2-1 line emission towards strongly lensed high-redshift dusty star forming galaxies (DSFGs) previously discovered with the South Pole Telescope (SPT). Our sam ple comprises 17 sources that had CO-based spectroscopic redshifts obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) and the Atacama Pathfinder Experiment (APEX). We detect all sources with known redshifts in either CO J=1-0 or J=2-1. Twelve sources are detected in the 7-mm continuum. The derived CO luminosities imply gas masses in the range (0.5-11)x10^{10} M_sun and gas depletion timescales <200 Myr, using a CO to gas mass conversion factor alpha_CO=0.8 M_sun (K km/s pc^2)^{-1}. Combining the CO luminosities and dust masses, along with a fixed gas-to-dust ratio, we derive alpha_CO factors in the range 0.4-1.8, similar to what is found in other starbursting systems. We find small scatter in alpha_CO values within the sample, even though inherent variations in the spatial distribution of dust and gas in individual cases could bias the dust-based alpha_CO estimates. We find that lensing magnification factors based on the CO linewidth to luminosity relation (mu_CO) are highly unreliable, but particularly when mu<5. Finally, comparison of the gas and dynamical masses suggest that the average molecular gas fraction stays relatively constant at z=2-5 in the SPT DSFG sample.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا