ﻻ يوجد ملخص باللغة العربية
People can learn a new concept and use it compositionally, understanding how to blicket twice after learning how to blicket. In contrast, powerful sequence-to-sequence (seq2seq) neural networks fail such tests of compositionality, especially when composing new concepts together with existing concepts. In this paper, I show how memory-augmented neural networks can be trained to generalize compositionally through meta seq2seq learning. In this approach, models train on a series of seq2seq problems to acquire the compositional skills needed to solve new seq2seq problems. Meta se2seq learning solves several of the SCAN tests for compositional learning and can learn to apply implicit rules to variables.
Humans can understand and produce new utterances effortlessly, thanks to their compositional skills. Once a person learns the meaning of a new verb dax, he or she can immediately understand the meaning of dax twice or sing and dax. In this paper, we
Sequence-to-sequence models have been applied to a wide variety of NLP tasks, but how to properly use them for dialogue state tracking has not been systematically investigated. In this paper, we study this problem from the perspectives of pre-trainin
Pre-training and fine-tuning, e.g., BERT, have achieved great success in language understanding by transferring knowledge from rich-resource pre-training task to the low/zero-resource downstream tasks. Inspired by the success of BERT, we propose MAsk
Neural sequence models exhibit limited compositional generalization ability in semantic parsing tasks. Compositional generalization requires algebraic recombination, i.e., dynamically recombining structured expressions in a recursive manner. However,
This paper presents an empirical study of conversational question reformulation (CQR) with sequence-to-sequence architectures and pretrained language models (PLMs). We leverage PLMs to address the strong token-to-token independence assumption made in