ﻻ يوجد ملخص باللغة العربية
By exploiting the quantised nature of light, we demonstrate a sub-shot-noise scanning optical transmittance microscope. Our microscope demonstrates, with micron scale resolution, a factor of improvement in precision of 1.76(9) in transmittance estimation gained per probe photon relative to an optimal classical version at the same optical power. This would allow us to observe photosensitive samples with nearly twice the precision,without sacrificing image resolution or increasing optical power to improve signal-to-noise ratio. Our setup uses correlated twin-beams produced by parametric down-conversion, and a hybrid detection scheme comprising photon-counting-based feed-forward and a highly efficient CCD camera.
Quantum-intensity-correlated twin beams of light can be used to measure absorption with precision beyond the classical shot-noise limit. The degree to which this can be achieved with a given estimator is defined by the quality of the twin-beam intens
In the last years several proof of principle experiments have demonstrated the advantages of quantum technologies respect to classical schemes. The present challenge is to overpass the limits of proof of principle demonstrations to approach real appl
A promising result from optical quantum metrology is the ability to achieve sub-shot-noise performance in transmission or absorption measurements. This is due to the significantly lower uncertainty in light intensity of quantum beams with respect to
Phase measurement using a lossless Mach-Zehnder interferometer with certain entangled $N$-photon states can lead to a phase sensitivity of the order of 1/N, the Heisenberg limit. However, previously considered output measurement schemes are different
We theoretically study the phase sensitivity of an SU(1,1) interferometer with a thermal state and squeezed vacuum state as inputs and parity detection as measurement. We find that phase sensitivity can beat the shot-noise limit and approaches the He