ترغب بنشر مسار تعليمي؟ اضغط هنا

Reconstruction of air-shower measurements with AERA in the presence of pulsed radio-frequency interference

327   0   0.0 ( 0 )
 نشر من قبل Tim Huege
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Auger Engineering Radio Array (AERA) is situated in the Argentinian Pampa Amarilla, a location far away from large human settlements. Nevertheless, a strong background of pulsed radio-frequency interference (RFI) exists on site, which not only makes radio self-triggering challenging but also poses a problem for an efficient and pure reconstruction of air-shower measurements. We present how our standard event reconstruction exploits several strategies to identify and suppress pulsed noise, and quantify the efficiency and purity of our algorithms. These strategies can be employed by any experiment taking radio data in the presence of pulsed RFI.



قيم البحث

اقرأ أيضاً

The recent progress in the radio detection technique for air showers paves the path to future cosmic-ray radio detectors. Digital radio arrays allow for a measurement of the air-shower energy and depth of its maximum with a resolution comparable to t hose of the leading optical detection methods. One of the remaining challenges regarding cosmic-ray radio instrumentation is an accurate estimation of their efficiency and aperture. We present a probabilistic model to address this challenge. We use the model to estimate the efficiency and aperture of the Tunka-Rex radio array. The basis of the model is a parametrization of the radio footprint and a probabilistic treatment of the detection process on both the antenna and array levels. In this way, we can estimate the detection efficiency for air showers as function of their arrival direction, energy, and impact point on the ground. In addition, the transparent internal relationships between the different stages of the air-shower detection process in our probabilistic approach enable to estimate the uncertainty of the efficiency and, consequently, of the aperture of radio arrays. The details of the model will be presented in the contribution.
Despite the significant experimental effort made in the last decades, the origin of the ultra-high energy cosmic rays is still largely unknown. Key astrophysical information to identify where these energetic particles come from is provided by their c hemical composition. It is well known that a very sensitive tracer of the primary particle type is the muon content of the showers generated by the interaction of the cosmic rays with air molecules. We introduce a likelihood function to reconstruct particle densities using segmented detectors with time resolution. As an example of this general method, we fit the muon distribution at ground level using an array of counters like AMIGA, one of the Pierre Auger Observatory detectors. For this particular case we compare the reconstruction performance against a previous method. With the new technique, more events can be reconstructed than before. In addition the statistical uncertainty of the measured number of muons is reduced, allowing for a better discrimination of the cosmic ray primary mass.
Sparse digital antenna arrays constitute a promising detection technique for future large-scale cosmic-ray observatories. It has recently been shown that this kind of instrumentation can provide a resolution of the energy and of the shower maximum on the level of other cosmic-ray detection methods. Due to the dominant geomagnetic nature of the air-shower radio emission in the traditional frequency band of 30 to 80 MHz, the amplitude and polarization of the radio signal strongly depend on the azimuth and zenith angle of the arrival direction. Thus, the estimation of the efficiency and subsequently of the aperture of an antenna array is more complex than for particle or Cherenkov-light detectors. We have built a new efficiency model based on utilizing a lateral distribution function as a shower model, and a probabilistic treatment of the detection process. The model is compared to the data measured by the Tunka Radio Extension (Tunka-Rex), a digital antenna array with an area of about 1 km$^2$ located in Siberia at the Tunka Advanced Instrument for Cosmic rays and Gamma Ray Astronomy (TAIGA). Tunka-Rex detects radio emission of air showers using trigger from air-Cherenkov and particle detectors. The present study is an essential step towards the measurement of the cosmic-ray flux with Tunka-Rex, and is important for radio measurements of air showers in general.
We quantify the effect of radio frequency interference (RFI) on measurements of the 21-cm power spectrum during the Epoch of Reionization (EoR). Specifically, we investigate how the frequency structure of RFI source emission generates contamination i n higher-order wave modes that is much more problematic than smooth-spectrum foreground sources. Using a relatively optimistic EoR model, we find that even a single relatively dim RFI source can overwhelm the EoR power spectrum signal of $sim10text{ mK}^2$ for modes $0.1 text{ }htext{ Mpc}^{-1} < k < 2 text{ }htext{ Mpc}^{-1}$. If total apparent RFI flux density in the final power spectrum integration is kept below 1 mJy, an EoR signal resembling this optimistic model should be detectable for modes $k < 0.9text{ }htext{ Mpc}^{-1}$, given no other systematic contaminants and an error tolerance as high as 10%. More pessimistic models will be more restrictive. These results emphasize the need for highly effective RFI mitigation strategies for telescopes used to search for the EoR.
The mass composition of cosmic rays contains important clues about their origin. Accurate measurements are needed to resolve long-standing issues such as the transition from Galactic to extragalactic origin, and the nature of the cutoff observed at t he highest energies. Composition can be studied by measuring the atmospheric depth of the shower maximum Xmax of air showers generated by high-energy cosmic rays hitting the Earths atmosphere. We present a new method to reconstruct Xmax based on radio measurements. The radio emission mechanism of air showers is a complex process that creates an asymmetric intensity pattern on the ground. The shape of this pattern strongly depends on the longitudinal development of the shower. We reconstruct Xmax by fitting two-dimensional intensity profiles, simulated with CoREAS, to data from the LOFAR radio telescope. In the dense LOFAR core, air showers are detected by hundreds of antennas simultaneously. The simulations fit the data very well, indicating that the radiation mechanism is now well-understood. The typical uncertainty on the reconstruction of Xmax for LOFAR showers is 17 g/cm^2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا