ﻻ يوجد ملخص باللغة العربية
Non-equilibrium physics is a particularly fascinating field of current research. Generically, driven systems are gradually heated up so that quantum effects die out. In contrast, we show that a driven central spin model including controlled dissipation in a highly excited state allows us to distill quantum coherent states, indicated by a substantial reduction of entropy. The model is experimentally accessible in quantum dots or molecules with unpaired electrons. The potential of preparing and manipulating coherent states by designed driving potentials is pointed out.
The quantum Zeno effect is well-known for fixing a system to an eigenstate by frequent measurements. It is also known that applying frequent unitary pulses induces a Zeno subspace that can also pin the system to an eigenspace. Both approaches have be
We introduce and implement an interferometric technique based on chirped femtosecond laser pulses and nonlinear optics. The interference manifests as a high-visibility (> 85%) phase-insensitive dip in the intensity of an optical beam when the two int
Dense ensembles of spin qubits are valuable for quantum applications, even though their coherence protection remains challenging. Continuous dynamical decoupling can protect ensemble qubits from noise while allowing gate operations, but it is hindere
In this letter, we investigate the effects of non-Hermitian driving on quantum coherence in a bipartite system. The results that the dynamical localization destroyed by the Hermitian interaction revives are an evidence of the restoration of quantum c
We measure spectrally and spatially resolved high-order harmonics generated in argon using chirped multi-cycle laser pulses. Using a stable, high-repetition rate laser we observe detailed interference structures in the far-field. The structures are o