ﻻ يوجد ملخص باللغة العربية
We investigate the performance of Greens function coupled cluster singles and doubles (CCSD) method as a solver for Greens function embedding methods. To develop an efficient CC solver, we construct the one-particle Greens function from the coupled cluster (CC) wave function based on a non-hermitian Lanczos algorithm. The major advantage of this method is that its scaling does not depend on the number of frequency points. We have tested the applicability of the CC Greens function solver in the weakly to strongly correlated regimes by employing it for a half-filled 1D Hubbard model projected onto a single site impurity problem and a half-filled 2D Hubbard model projected onto a 4-site impurity problem. For the 1D Hubbard model, for all interaction strengths, we observe an excellent agreement with the full configuration interaction (FCI) technique, both for the self-energy and spectral function. For the 2D Hubbard, we have employed an open-shell version of the current implementation and observed some discrepancies from FCI in the strongly correlated regime. Finally, on an example of a small ammonia cluster, we analyze the performance of the Greens function CCSD solver within the self-energy embedding theory (SEET) with Hartee-Fock (HF) and Greens function second order (GF2) for the treatment of the environment.
Within the self-energy embedding theory (SEET) framework, we study coupled cluster Greens function (GFCC) method in two different contexts: as a method to treat either the system or environment present in the embedding construction. Our study reveals
We extend a previously proposed rotation and truncation scheme to optimize quantum Anderson impurity calculations with exact diagonalization [PRB 90, 085102 (2014)] to density-matrix renormalization group (DMRG) calculations. The method reduces the s
We describe the use of coupled-cluster theory as an impurity solver in dynamical mean-field theory (DMFT) and its cluster extensions. We present numerical results at the level of coupled-cluster theory with single and double excitations (CCSD) for th
Quantum impurity problems can be solved using the numerical renormalization group (NRG), which involves discretizing the free conduction electron system and mapping to a `Wilson chain. It was shown recently that Wilson chains for different electronic
Coupled cluster (CC) has established itself as a powerful theory to study correlated quantum many-body systems. Finite temperature generalizations of CC theory have attracted considerable interest and have been shown to work as well as the ground-sat