ﻻ يوجد ملخص باللغة العربية
Nature imposes many restrictions on the operations that we perform. Many of these restrictions can be interpreted in terms of {it resource} required to realize the operations. Classifying required resource for different types of operations and determining the amount of resource are the crucial subjects in physics. Among many types of operations, a unitary operation is one of the most fundamental operation that has been studied for long time in terms of the resource implicitly and explicitly. Yet, it is a long standing open problem to identify the resource and to clarify the necessary and sufficient amount of resource for implementing a general unitary operation under conservation laws. In this paper, we provide a solution to this open problem. We derive an asymptotically exact equality that clarifies the necessary and sufficient amount of quantum coherence as a resource to implement arbitrary unitary operation within a desired error. In this equality, the required coherence cost is asymptotically expressed with the implementation error and the degree of violation of conservation law in the desired unitary operation. We also discuss the underlying physics in several physical situations from the viewpoint of coherence cost based on the equality. This work does not only provide a solution to a long-standing problem on the unitary control, but also clarifies the key question of the resource theory of the quantum channels in the region of resource theory of asymmetry, for the case of unitary channels.
Uncertainty relations are one of the fundamental principles in physics. It began as a fundamental limitation in quantum mechanics, and today the word {it uncertainty relation} is a generic term for various trade-off relations in nature. In this lette
We prove that potential conservation laws have characteristics depending only on local variables if and only if they are induced by local conservation laws. Therefore, characteristics of pure potential conservation laws have to essentially depend on
The assumption that wave function collapse is induced by the interactions that generate decoherence leads to a stochastic collapse equation that does not require the introduction of any new physical constants and that is consistent with conservation
In driven-dissipative systems, the presence of a strong symmetry guarantees the existence of several steady states belonging to different symmetry sectors. Here we show that, when a system with a strong symmetry is initialized in a quantum superposit
When a gauge-natural invariant variational principle is assigned, to determine {em canonical} covariant conservation laws, the vertical part of gauge-natural lifts of infinitesimal principal automorphisms -- defining infinitesimal variations of secti