ﻻ يوجد ملخص باللغة العربية
The origin of simultaneous electronic, structural and magnetic transitions in bulk rare-earth nickelates ($RE$NiO$_3$) remains puzzling with multiple conflicting reports on the nature of these entangled phase transitions. Heterostructure engineering of these materials offers unique opportunity to decouple metal-insulator transition (MIT) from the magnetic transition. However, the evolution of underlying electronic properties across these decoupled transitions remains largely unexplored. In order to address this, we have measured Hall effect on a series of epitaxial NdNiO$_3$ films, spanning a variety of electronic and magnetic phases. We find that the MIT results in only partially gapped Fermi surface, whereas full insulating phase forms below the magnetic transition. In addition, we also find a systematic reduction of the Hall coefficient ($R_H$) in the metallic phase of these films with epitaxial strain and also a surprising transition to negative value at large compressive strain. Partially gapped weakly insulating, paramagnetic phase is reminiscence of pseudogap behavior of high $T_c$ cuprates. The precursor metallic phase, which undergoes transition to insulating phase is a non-Fermi liquid with the temperature exponent ($n$) of resistivity of 1, whereas the exponent increases to 4/3 in the non-insulating samples. Such nickelate phase diagram with sign-reversal of $R_H$, pseudo-gap phase and non Fermi liquid behavior are intriguingly similar to high $T_c$ cuprates, giving important guideline to engineer unconventional superconductivity in oxide heterostructure.
We have investigated the temperature driven first order metal-insulator (M-I) transition in thin films of NdNiO$_3$ and have compared it with the bulk behavior. The M-I transition of thin films is sensitive to epitaxial strain and a partial relaxatio
Electron-boson interaction is fundamental to a thorough understanding of various exotic properties emerging in many-body physics. In photoemission spectroscopy, photoelectron emission due to photon absorption would trigger diverse collective excitati
We have carried out extensive comparative studies of the structural and transport properties of CaRuO$_3$ thin films grown under various oxygen pressure. We find that the preferred orientation and surface roughness of the films are strongly affected
We study the magneto-optical Kerr effect (MOKE) in SrRuO$_3$ thin films, uncovering wide regimes of wavelength, temperature, and magnetic field where the Kerr rotation is not simply proportional to the magnetization but instead displays two-component
Oxygen packaging in transition metal oxides determines the metal-oxygen hybridization and electronic occupation at metal orbitals. Strontium vanadate (SrVO$_3$), having a single electron in a $3d$ orbital, is thought to be the simplest example of str