ترغب بنشر مسار تعليمي؟ اضغط هنا

Geodesics on Riemannian stacks

168   0   0.0 ( 0 )
 نشر من قبل Mateus De Melo
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Metrics on Lie groupoids and differentiable stacks have been introduced recently, extending the Riemannian geometry of manifolds and orbifolds to more general singular spaces. Here we continue that theory, studying stacky curves on Riemannian stacks, measuring their length using stacky metrics, and introducing stacky geodesics. Our main results show that the length of stacky curves measure distances on the orbit space, characterize stacky geodesics as locally minimizing curves, and establish a stacky version of Hopf-Rinow Theorem. We include a concise overview that bypasses nonessential technicalities, and we lay stress on the examples of orbit spaces of isometric actions and leaf spaces of Riemannian foliations.



قيم البحث

اقرأ أيضاً

We study Riemannian metrics on Lie groupoids in the relative setting. We show that any split fibration between proper groupoids can be made Riemannian, and we use these metrics to linearize proper groupoid fibrations. As an application, we derive rig idity theorems for Lie groupoids, which unify, simplify and improve similar results for classic geometries. Then we establish the Morita invariance for our metrics, introduce a notion for metrics on stacks, and use them to construct stacky tubular neighborhoods and to prove a stacky Ehresmann theorem.
87 - Herng Yi Cheng 2021
This paper proves that in any closed Riemannian surface $M$ with diameter $d$, the length of the $k^text{th}$-shortest geodesic between two given points $p$ and $q$ is at most $8kd$. This bound can be tightened further to $6kd$ if $p = q$. This impro ves prior estimates by A. Nabutovsky and R. Rotman.
178 - Brian Clarke 2010
Given a fixed closed manifold M, we exhibit an explicit formula for the distance function of the canonical L^2 Riemannian metric on the manifold of all smooth Riemannian metrics on M. Additionally, we examine the (metric) completion of the manifold o f metrics with respect to the L^2 metric and show that there exists a unique minimal path between any two points. This path is also given explicitly. As an application of these formulas, we show that the metric completion of the manifold of metrics is a CAT(0) space.
We consider a closed three-dimensional contact sub-Riemannian manifold. The objective of this note is to provide a precise description of the sub-Riemannian geodesics with large initial momenta: we prove that they spiral around the Reeb orbits, not o nly in the phase space but also in the configuration space. Our analysis is based on a normal form along any Reeb orbit due to Melrose.
226 - Maciej Dunajski , Paul Tod 2019
We study the integrability of the conformal geodesic flow (also known as the conformal circle flow) on the $SO(3)$--invariant gravitational instantons. On a hyper--Kahler four--manifold the conformal geodesic equations reduce to geodesic equations of a charged particle moving in a constant self--dual magnetic field. In the case of the anti--self--dual Taub NUT instanton we integrate these equations completely by separating the Hamilton--Jacobi equations, and finding a commuting set of first integrals. This gives the first example of an integrable conformal geodesic flow on a four--manifold which is not a symmetric space. In the case of the Eguchi--Hanson we find all conformal geodesics which lie on the three--dimensional orbits of the isometry group. In the non--hyper--Kahler case of the Fubini--Study metric on $CP^2$ we use the first integrals arising from the conformal Killing--Yano tensors to recover the known complete integrability of conformal geodesics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا