ﻻ يوجد ملخص باللغة العربية
Metrics on Lie groupoids and differentiable stacks have been introduced recently, extending the Riemannian geometry of manifolds and orbifolds to more general singular spaces. Here we continue that theory, studying stacky curves on Riemannian stacks, measuring their length using stacky metrics, and introducing stacky geodesics. Our main results show that the length of stacky curves measure distances on the orbit space, characterize stacky geodesics as locally minimizing curves, and establish a stacky version of Hopf-Rinow Theorem. We include a concise overview that bypasses nonessential technicalities, and we lay stress on the examples of orbit spaces of isometric actions and leaf spaces of Riemannian foliations.
We study Riemannian metrics on Lie groupoids in the relative setting. We show that any split fibration between proper groupoids can be made Riemannian, and we use these metrics to linearize proper groupoid fibrations. As an application, we derive rig
This paper proves that in any closed Riemannian surface $M$ with diameter $d$, the length of the $k^text{th}$-shortest geodesic between two given points $p$ and $q$ is at most $8kd$. This bound can be tightened further to $6kd$ if $p = q$. This impro
Given a fixed closed manifold M, we exhibit an explicit formula for the distance function of the canonical L^2 Riemannian metric on the manifold of all smooth Riemannian metrics on M. Additionally, we examine the (metric) completion of the manifold o
We consider a closed three-dimensional contact sub-Riemannian manifold. The objective of this note is to provide a precise description of the sub-Riemannian geodesics with large initial momenta: we prove that they spiral around the Reeb orbits, not o
We study the integrability of the conformal geodesic flow (also known as the conformal circle flow) on the $SO(3)$--invariant gravitational instantons. On a hyper--Kahler four--manifold the conformal geodesic equations reduce to geodesic equations of