ﻻ يوجد ملخص باللغة العربية
Generative modeling of 3D shapes has become an important problem due to its relevance to many applications across Computer Vision, Graphics, and VR. In this paper we build upon recently introduced 3D mesh-convolutional Variational AutoEncoders which have shown great promise for learning rich representations of deformable 3D shapes. We introduce a supervised generative 3D mesh model that disentangles the latent shape representation into independent generative factors. Our extensive experimental analysis shows that learning an explicitly disentangled representation can both improve random shape generation as well as successfully address downstream tasks such as pose and shape transfer, shape-invariant temporal synchronization, and pose-invariant shape matching.
We propose a probabilistic model to infer supervised latent variables in the Hamming space from observed data. Our model allows simultaneous inference of the number of binary latent variables, and their values. The latent variables preserve neighbour
Recent work by Locatello et al. (2018) has shown that an inductive bias is required to disentangle factors of interest in Variational Autoencoder (VAE). Motivated by a real-world problem, we propose a setting where such bias is introduced by providin
Intelligent agents should be able to learn useful representations by observing changes in their environment. We model such observations as pairs of non-i.i.d. images sharing at least one of the underlying factors of variation. First, we theoretically
As the application of deep neural networks proliferates in numerous areas such as medical imaging, video surveillance, and self driving cars, the need for explaining the decisions of these models has become a hot research topic, both at the global an
Recent work has explored transforming data sets into smaller, approximate summaries in order to scale Bayesian inference. We examine a related problem in which the parameters of a Bayesian model are very large and expensive to store in memory, and pr