ﻻ يوجد ملخص باللغة العربية
In-memory computing is a promising non-von Neumann approach for making energy-efficient deep learning inference hardware. Crossbar arrays of resistive memory devices can be used to encode the network weights and perform efficient analog matrix-vector multiplications without intermediate movements of data. However, due to device variability and noise, the network needs to be trained in a specific way so that transferring the digitally trained weights to the analog resistive memory devices will not result in significant loss of accuracy. Here, we introduce a methodology to train ResNet-type convolutional neural networks that results in no appreciable accuracy loss when transferring weights to in-memory computing hardware based on phase-change memory (PCM). We also propose a compensation technique that exploits the batch normalization parameters to improve the accuracy retention over time. We achieve a classification accuracy of 93.7% on the CIFAR-10 dataset and a top-1 accuracy on the ImageNet benchmark of 71.6% after mapping the trained weights to PCM. Our hardware results on CIFAR-10 with ResNet-32 demonstrate an accuracy above 93.5% retained over a one day period, where each of the 361,722 synaptic weights of the network is programmed on just two PCM devices organized in a differential configuration.
Spiking Neural Networks (SNNs) offer an event-driven and more biologically realistic alternative to standard Artificial Neural Networks based on analog information processing. This can potentially enable energy-efficient hardware implementations of n
Hyperdimensional Computing (HDC) is an emerging computational framework that mimics important brain functions by operating over high-dimensional vectors, called hypervectors (HVs). In-memory computing implementations of HDC are desirable since they c
Deep neural networks (DNNs) have revolutionized the field of artificial intelligence and have achieved unprecedented success in cognitive tasks such as image and speech recognition. Training of large DNNs, however, is computationally intensive and th
Magnetic skyrmions are emerging as potential candidates for next generation non-volatile memories. In this paper, we propose an in-memory binary neural network (BNN) accelerator based on the non-volatile skyrmionic memory, which we call as SIMBA. SIM
An analog synapse circuit based on ferroelectric-metal field-effect transistors is proposed, that offers 6-bit weight precision. The circuit is comprised of volatile least significant bits (LSBs) used solely during training, and non-volatile most sig