ترغب بنشر مسار تعليمي؟ اضغط هنا

Temporal evolution and correlations of optical activity indicators measured in Sun-as-a-star observations

62   0   0.0 ( 0 )
 نشر من قبل Jesus Maldonado
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(Abridged) We perform a detailed study of the main optical activity indicators (Ca II H & K, Balmer lines, Na I D$_{rm 1}$ D$_{rm 2}$, and He I D$_{rm 3}$) measured for the Sun using the data provided by the HARPS-N solar-telescope feed at the Telescopio Nazionale Galileo. The value of the solar rotation period is found in all the activity indicators, with the only exception being H$delta$. The derived values vary from 26.29 days (H$gamma$ line) to 31.23 days (He I). From an analysis of sliding periodograms we find that in most of the activity indicators the spectral power is split into several bands of periods around 26 and 30 days, that might be explained by the migration of active regions between the equator and a latitude of $sim$ 30$^{circ}$, spot evolution or a combination of both effects. In agreement with previous works a typical lifetime of active regions of $sim$ ten rotation periods is inferred from the pooled variance diagrams. We find that H$alpha$, H$beta$, H$gamma$, H$epsilon$, and He I show a significant correlation with the S index. Significant correlations between the contrast, bisector span, and the heliocentric radial velocity with the activity indexes are also found. We show that the full width at half maximum, the bisector, and the disc-integrated magnetic field correlate with the radial velocity variations. The correlation of the S index and H$alpha$ changes with time, increasing with larger sun spot numbers and solar irradiance. A similar tendency with the S index - radial velocity correlation is also present in the data. Our results are consistent with a scenario in which higher activity favours the correlation between the S index and the H$alpha$ activity indicators and between the S index and radial velocity variations.



قيم البحث

اقرأ أيضاً

Major solar flares are prone to occur in active region atmospheres associated with large, complex, dynamically-evolving sunspots. This points to the importance of monitoring the evolution of starspots, not only in visible but also in ultra violet (UV ) and X-rays, in understanding the origin and occurrence of stellar flares. To this end, we perform spectral irradiance analysis on different types of transiting solar active regions by using a variety of full-disk synoptic observations. The target events are an isolated sunspot, spotless plage, and emerging flux in prolonged quiet-Sun conditions selected from the past decade. We find that the visible continuum and total solar irradiance become darkened when the spot is at the central meridian, whereas it is bright near the solar limb; UV bands sensitive to the chromosphere correlate well with the variation of total unsigned magnetic flux in the photosphere; amplitudes of EUV and soft X-ray increase with the characteristic temperature, whose light curves are flat-topped due to their sensitivity to the optically thin corona; the transiting spotless plage does not show the darkening in the visible irradiance, while the emerging flux produces an asymmetry in all light curves about the central meridian. The multi-wavelength sun-as-a-star study described here indicates that such time lags between the coronal and photospheric light curves have the potential to probe the extent of coronal magnetic fields above the starspots. In addition, EUV wavelengths that are sensitive to the transition-region temperature sometimes show anti-phased variations, which may be used for diagnosing plasmas around starspots.
The radial velocity of the Sun as a star is affected by its surface convection and magnetic activity. The moments of the cross-correlation function between the solar spectrum and a binary line mask contain information about the stellar radial velocit y and line-profile distortions caused by stellar activity. As additional indicators, we consider the disc-averaged magnetic flux and the filling factor of the magnetic regions. Here we show that the activity-induced radial-velocity fluctuations are reduced when we apply a kernel regression to these activity indicators. The disc-averaged magnetic flux proves to be the best activity proxy over a timescale of one month and gives a standard deviation of the regression residuals of 1.04 m/s, more than a factor of 2.8 smaller than the standard deviation of the original radial velocity fluctuations. This result has been achieved thanks to the high-cadence and time continuity of the observations that simultaneously sample both the radial velocity and the activity proxies.
We have been using the 0.76-m Katzman Automatic Imaging Telescope (KAIT) at Lick Observatory to optically monitor a sample of 157 blazars that are bright in gamma rays, being detected with high significance ($ge 10sigma$) in one year by the Large Are a Telescope (LAT) on the {it Fermi Gamma-ray Space Telescope}. We attempt to observe each source on a 3-day cadence with KAIT, subject to weather and seasonal visibility. The gamma-ray coverage is essentially continuous. KAIT observations extend over much of the 5-year {it Fermi} mission for several objects, and most have $>100$ optical measurements spanning the last three years. These blazars (flat-spectrum radio quasars and BL~Lac objects) exhibit a wide range of flaring behavior. Using the discrete correlation function (DCF), here we search for temporal relationships between optical and gamma-ray light curves in the 40 brightest sources in hopes of placing constraints on blazar acceleration and emission zones. We find strong optical--gamma-ray correlation in many of these sources at time delays of $sim 1$ to $sim 10$ days, ranging between $-40$ and +30 days. A stacked average DCF of the 40 sources verifies this correlation trend, with a peak above 99% significance indicating a characteristic time delay consistent with 0 days. These findings strongly support the widely accepted leptonic models of blazar emission. However, we also find examples of apparently uncorrelated flares (optical flares with no gamma-ray counterpart and gamma-ray flares with no optical counterpart) that challenge simple, one-zone models of blazar emission. Moreover, we find that flat-spectrum radio quasars tend to have gamma rays leading the optical, while intermediate and high synchrotron peak blazars with the most significant peaks have smaller lags/leads.
Sun-as-a-star observations are very important for the study of the conditions within the Sun and in particular for the deep interior where higher degree modes do not penetrate. They are also of significance in this era of dramatic advances in stellar asteroseismology as they are comparable to those measured in other stars by asteroseismic missions such as CoRoT, Kepler, and MOST. More than 17 years of continuous measurements of SoHO and more than 30 years of BiSON observations provide very long data sets of uninterrupted helioseismic observations. In this work, we discuss the present status of all these facilities that continue to provide state- of-the-art measurements and invaluable data to improve our knowledge of the deepest layers of the Sun and its structural changes during the activity cycle.
146 - A. A. Vidotto 2018
In the present work, we investigate how the large-scale magnetic field of the Sun, in its three vector components, has evolved during most of cycle 24, from 2010 Jan to 2018 Apr. To filter out the small-scale field of the Sun, present in high-resolut ion synoptic maps, we use a spherical harmonic decomposition method, which decomposes the solar field in multipoles with different l degrees. By summing together the low-l multipoles, we reconstruct the large-scale field at a resolution similar to observed stellar magnetic fields, which allows the direct comparison between solar and stellar magnetic maps. During cycle 24, the `Sun-as-a-star magnetic field shows a polarity reversal in the radial and meridional components, but not in the azimuthal component. The large-scale solar field remains mainly poloidal with > 70% of its energy contained in the poloidal component. During its evolution, the large-scale field is more axisymmetric and more poloidal when near minima in sunspot numbers, and with a larger intensity near maximum. There is a correlation between toroidal energy and sunspot number, which indicates that spot fields are major contributors to the toroidal large-scale energy of the Sun. The solar large-scale magnetic properties fit smoothly with observational trends of stellar magnetism reported in See et al. The toroidal (Etor) and poloidal (Epol) energies are related as Etor ~Epol^{1.38 pm 0.04}. Similar to the stellar sample, the large-scale field of the Sun shows a lack of toroidal non-axisymmetric field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا