ترغب بنشر مسار تعليمي؟ اضغط هنا

Relating Causal and Probabilistic Approaches to Contextuality

73   0   0.0 ( 0 )
 نشر من قبل Matt Jones
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Matt Jones




اسأل ChatGPT حول البحث

A primary goal in recent research on contextuality has been to extend this concept to cases of inconsistent connectedness, where observables have different distributions in different contexts. This article proposes a solution within the framework of probabilistic causal models, which extend hidden-variables theories, and then demonstrates an equivalence to the contextuality-by-default (CbD) framework. CbD distinguishes contextuality from direct influences of context on observables, defining the latter purely in terms of probability distributions. Here we take a causal view of direct influences, defining direct influence within any causal model as the probability of all latent states of the system in which a change of context changes the outcome of a measurement. Model-based contextuality (M-contextuality) is then defined as the necessity of stronger direct influences to model a full system than when considered individually. For consistently connected systems, M-contextuality agrees with standard contextuality. For general systems, it is proved that M-contextuality is equivalent to the property that any model of a system must contain hidden influences, meaning direct influences that go in opposite directions for different latent states, or equivalently signaling between observers that carries no information. This criterion can be taken as formalizing the no-conspiracy principle that has been proposed in connection with CbD. M-contextuality is then proved to be equivalent to CbD-contextuality, thus providing a new interpretation of CbD-contextuality as the non-existence of a model for a system without hidden direct influences.



قيم البحث

اقرأ أيضاً

Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus ca usal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.
Contextuality and nonlocality are non-classical properties exhibited by quantum statistics whose implications profoundly impact both foundations and applications of quantum theory. In this paper we provide some insights into logical contextuality and inequality-free proofs. The former can be understood as the possibility version of contextuality, while the latter refers to proofs of quantum contextuality/nonlocality that are not based on violations of some noncontextuality (or Bell) inequality. The present work aims to build a bridge between these two concepts from what we call possibilistic paradoxes, which are sets of possibilistic conditions whose occurrence implies contextuality/nonlocality. As main result, we demonstrate the existence of possibilistic paradoxes whose occurrence is a necessary and sufficient condition for logical contextuality in a very important class of scenarios. Finally, we discuss some interesting consequences arising from the completeness of these possibilistic paradoxes.
Exploring the graph approach, we restate the extended definition of noncontextuality provided by the contextuality-by-default framework. This extended definition avoids the assumption of nondisturbance, which states that whenever two contexts overlap , the marginal distribution obtained for the intersection must be the same. We show how standard tools for characterizing contextuality can also be used in this extended framework for any set of measurements and, in addition, we also provide several conditions that can be tested directly in any contextuality experiment. Our conditions reduce to traditional ones for noncontextuality if the nondisturbance assumption is satisfied.
We propose a simple tractable pair hidden Markov model for pairwise sequence alignment that accounts for the presence of short tandem repeats. Using the framework of gain functions, we design several optimization criteria for decoding this model and describe the resulting decoding algorithms, ranging from the traditional Viterbi and posterior decoding to block-based decoding algorithms specialized for our model. We compare the accuracy of individual decoding algorithms on simulated data and find our approach superior to the classical three-state pair HMM in simulations.
In quantum physics the term `contextual can be used in more than one way. One usage, here called `Bell contextual since the idea goes back to Bell, is that if $A$, $B$ and $C$ are three quantum observables, with $A$ compatible (i.e., commuting) with $B$ and also with $C$, whereas $B$ and $C$ are incompatible, a measurement of $A$ might yield a different result (indicating that quantum mechanics is contextual) depending upon whether $A$ is measured along with $B$ (the ${A,B}$ context) or with $C$ (the ${A,C}$ context). An analysis of what projective quantum measurements measure shows that quantum theory is Bell noncontextual: the outcome of a particular $A$ measurement when $A$ is measured along with $B$ would have been exactly the same if $A$ had, instead, been measured along with $C$. A different definition, here called `globally (non)contextual refers to whether or not there is (noncontextual) or is not (contextual) a single joint probability distribution that simultaneously assigns probabilities in a consistent manner to the outcomes of measurements of a certain collection of observables, not all of which are compatible. A simple example shows that such a joint probability distribution can exist even in a situation where the measurement probabilities cannot refer to properties of a quantum system, and hence lack physical significance, even though mathematically well-defined. It is noted that the quantum sample space, a projective decomposition of the identity, required for interpreting measurements of incompatible properties in different runs of an experiment using different types of apparatus has a tensor product structure, a fact sometimes overlooked.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا