ﻻ يوجد ملخص باللغة العربية
We investigate the scrambling of information in a hierarchical star-topology system using out-of-time-ordered correlation (OTOC) functions. The system consists of a central qubit directly interacting with a set of satellite qubits, which in turn interact with a second layer of satellite qubits. This particular topology not only allows convenient preparation and filtering of multiple quantum coherences between the central qubit and the first layer but also to engineer scrambling in a controlled manner. Hence, it provides us with an opportunity to experimentally study scrambling of information localized in multi-spin correlations via the construction of relevant OTOCs. Since the measurement of OTOC requires a time evolution, the non-scrambling processes such as decoherence and certain experimental errors create an ambiguity. Therefore, the unambiguous quantification of information scrambling requires suppressing contributions from decoherence to the OTOC dynamics. To this end, we propose and experimentally demonstrate a constant time protocol which is able to filter contribution exclusively from information scrambling.
The information scrambling in many-body systems is closely related to quantum chaotic dynamics, complexity, and gravity. Here we propose a collision model to simulate the information dynamics in an all-optical system. In our model the information is
Quantum scrambling is the dispersal of local information into many-body quantum entanglements and correlations distributed throughout the entire system. This concept underlies the dynamics of thermalization in closed quantum systems, and more recentl
We provide a protocol to measure out-of-time-order correlation functions. These correlation functions are of theoretical interest for diagnosing the scrambling of quantum information in black holes and strongly interacting quantum systems generally.
Interaction in quantum systems can spread initially localized quantum information into the many degrees of freedom of the entire system. Understanding this process, known as quantum scrambling, is the key to resolving various conundrums in physics. H
Understanding various phenomena in non-equilibrium dynamics of closed quantum many-body systems, such as quantum thermalization, information scrambling, and nonergodic dynamics, is a crucial for modern physics. Using a ladder-type superconducting qua