ترغب بنشر مسار تعليمي؟ اضغط هنا

Unambiguous measurement of information scrambling in a hierarchical star-topology system

55   0   0.0 ( 0 )
 نشر من قبل Deepak Khurana
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the scrambling of information in a hierarchical star-topology system using out-of-time-ordered correlation (OTOC) functions. The system consists of a central qubit directly interacting with a set of satellite qubits, which in turn interact with a second layer of satellite qubits. This particular topology not only allows convenient preparation and filtering of multiple quantum coherences between the central qubit and the first layer but also to engineer scrambling in a controlled manner. Hence, it provides us with an opportunity to experimentally study scrambling of information localized in multi-spin correlations via the construction of relevant OTOCs. Since the measurement of OTOC requires a time evolution, the non-scrambling processes such as decoherence and certain experimental errors create an ambiguity. Therefore, the unambiguous quantification of information scrambling requires suppressing contributions from decoherence to the OTOC dynamics. To this end, we propose and experimentally demonstrate a constant time protocol which is able to filter contribution exclusively from information scrambling.



قيم البحث

اقرأ أيضاً

54 - Yan Li , Xingli Li , 2020
The information scrambling in many-body systems is closely related to quantum chaotic dynamics, complexity, and gravity. Here we propose a collision model to simulate the information dynamics in an all-optical system. In our model the information is initially localized in the memory and evolves under the combined actions of many-body interactions and dissipation. We find that the information is scrambled if the memory and environmental particles are alternatively squeezed along two directions which are perpendicular to each other. Moreover, the disorder and imperfection of the interaction strength tend to prevent the information flow away to the environment and lead to the information scrambling in the memory. We analyze the spatial distributions of the correlations in the memory. Our proposal is possible to realize with current experimental techniques.
Quantum scrambling is the dispersal of local information into many-body quantum entanglements and correlations distributed throughout the entire system. This concept underlies the dynamics of thermalization in closed quantum systems, and more recentl y has emerged as a powerful tool for characterizing chaos in black holes. However, the direct experimental measurement of quantum scrambling is difficult, owing to the exponential complexity of ergodic many-body entangled states. One way to characterize quantum scrambling is to measure an out-of-time-ordered correlation function (OTOC); however, since scrambling leads to their decay, OTOCs do not generally discriminate between quantum scrambling and ordinary decoherence. Here, we implement a quantum circuit that provides a positive test for the scrambling features of a given unitary process. This approach conditionally teleports a quantum state through the circuit, providing an unambiguous litmus test for scrambling while projecting potential circuit errors into an ancillary observable. We engineer quantum scrambling processes through a tunable 3-qubit unitary operation as part of a 7-qubit circuit on an ion trap quantum computer. Measured teleportation fidelities are typically $sim80%$, and enable us to experimentally bound the scrambling-induced decay of the corresponding OTOC measurement.
We provide a protocol to measure out-of-time-order correlation functions. These correlation functions are of theoretical interest for diagnosing the scrambling of quantum information in black holes and strongly interacting quantum systems generally. Measuring them requires an echo-type sequence in which the sign of a many-body Hamiltonian is reversed. We detail an implementation employing cold atoms and cavity quantum electrodynamics to realize the chaotic kicked top model, and we analyze effects of dissipation to verify its feasibility with current technology. Finally, we propose in broad strokes a number of other experimental platforms where similar out-of-time-order correlation functions can be measured.
Interaction in quantum systems can spread initially localized quantum information into the many degrees of freedom of the entire system. Understanding this process, known as quantum scrambling, is the key to resolving various conundrums in physics. H ere, by measuring the time-dependent evolution and fluctuation of out-of-time-order correlators, we experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor. We engineer quantum circuits that distinguish the two mechanisms associated with quantum scrambling, operator spreading and operator entanglement, and experimentally observe their respective signatures. We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate. These results open the path to studying complex and practically relevant physical observables with near-term quantum processors.
Understanding various phenomena in non-equilibrium dynamics of closed quantum many-body systems, such as quantum thermalization, information scrambling, and nonergodic dynamics, is a crucial for modern physics. Using a ladder-type superconducting qua ntum processor, we perform analog quantum simulations of both the $XX$ ladder and one-dimensional (1D) $XX$ model. By measuring the dynamics of local observables, entanglement entropy and tripartite mutual information, we signal quantum thermalization and information scrambling in the $XX$ ladder. In contrast, we show that the $XX$ chain, as free fermions on a 1D lattice, fails to thermalize, and local information does not scramble in the integrable channel. Our experiments reveal ergodicity and scrambling in the controllable qubit ladder, and opens the door to further investigations on the thermodynamics and chaos in quantum many-body systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا