ﻻ يوجد ملخص باللغة العربية
Screening in reduced dimensions has strong consequences on the electronic properties in van der Waals semiconductors, impacting the quasiparticle band gap and exciton binding energy. Screening in these materials is typically treated isotropically, yet black phosphorus exhibits in-plane electronic anisotropy seen in its effective mass, carrier mobility, excitonic wavefunctions, and plasmonic dispersion. Here, we use the adsorption of individual potassium atoms on the surface of black phosphorus to vary the near-surface doping over a wide range, while simultaneously probing the dielectric screening via the ordering of the adsorbed atoms. Using scanning tunneling microscopy, we visualize the role of strongly anisotropic screening which leads to the formation of potassium chains with a well-defined orientation and spacing. We quantify the mean interaction potential utilizing statistical methods and find that the dimensionality and anisotropy of the screening is consistent with the presence of a band-bending induced confinement potential near the surface. We corroborate the observed behavior with coverage-dependent studies of the electronic structure with angle-resolved photoemission.
Black phosphorus (BP), a layered van der Waals material, reportedly has a band gap sensitive to external perturbations and manifests a Dirac-semimetal phase when its band gap is closed. Previous studies were focused on effects of each perturbation, l
Weak localization was observed and determined in a black phosphorus (bP) field-effect transistor 65 nm thick. The weak localization behaviour was found to be in excellent agreement with the Hikami-Larkin-Nagaoka model for fields up to 1~T, from which
Recently, it was demonstrated that a graphene/dielectric/metal configuration can support acoustic plasmons, which exhibit extreme plasmon confinement an order of magnitude higher than that of conventional graphene plasmons. Here, we investigate acous
We report about the energy and momentum resolved optical response of black phosphorus (BP) in its bulk form. Along the armchair direction of the puckered layers we find a highly dispersive mode that is trongly suppressed in the perpendicular (zig-zag
Black phosphorus (bP) is the second known elemental allotrope with a layered crystal structure that can be mechanically exfoliated down to atomic layer thickness. We have fabricated bP naked quantum wells in a back-gated field effect transistor geome